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Abstract. In the paper we study some comparative growth properties of composite en-
tire functions on the basis of generalized relative order, generalized relative type and
generalized relative weak type with respect to other entire functions.
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1. Introduction, Definitions and Notations

Let f be an entire function defined in the open complex plane C. For entire f =
∞∑

n=0
anzn on |z| = r, the maximum term denoted as μ f (r) and the maximum modulus

symbolized as Mf (r) are respectively defined as max
n≥0

(|an| rn) and max
|z|=r

∣∣∣ f (z)
∣∣∣. If f is

non-constant entire then Mf (r) is strictly increasing and continuous and therefore
there exists its inverse function M−1

f :
(∣∣∣ f (0)

∣∣∣ ,∞) → (0,∞) with lim
s→∞M−1

f (s) = ∞.
Similarly, μ−1

f (r) is also a increasing function of r. Moreover for another entire

function �, M� (r) along with μ� (r) are too defined and the ratios
Mf (r)
M�(r)

when r→∞
as well as

μ f (r)
μ�(r)

as r → ∞ are called the comparative growth of f with respect to
� in terms of their maximum moduli and the maximum term, respectively. This
study of comparative growth properties of entire functions under some different
directions is the prime concern of the paper. Our notations are standard within
the theory of Nevanlinna’s value distribution of entire functions and therefore we
do not explain those in detail as available in [14]. In the sequel the following two
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notations are used:

log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, · · · ;

log[0] x = x

and

exp[k] x = exp
(
exp[k−1] x

)
for k = 1, 2, 3, · · · ;

exp[0] x = x.

To start our paper we just recall the following definitions.

Definition 1.1. [10] The generalized order ρ[l]
f (respectively, generalized lower order

λ[l]
f ) of an entire function f is defined as

ρ[l]
f = lim sup

r→∞

log[l] Mf (r)

log log Mexp z (r)
= lim sup

r→∞

log[l] Mf (r)

log r

⎛⎜⎜⎜⎜⎝ respectively λ[l]
f = lim inf

r→∞
log[l] Mf (r)

log log Mexp z (r)
= lim inf

r→∞
log[l] Mf (r)

log r

⎞⎟⎟⎟⎟⎠
where l ≥ 1.

These definitions extend the definitions of order ρ f and lower order λ f of an
entire function f which are classical in complex analysis for integer l = 2 since these
correspond to the particular cases ρ[2]

f = ρ f (2, 1) = ρ f and λ[2]
f = λ f (2, 1) = λ f .

Using the inequality

μ f (r) ≤Mf (r) ≤ R
R − r

μ f (R)
{
c f . [12]

}
for 0 ≤ r < R,

the growth marker ρ f ( respectively λ f ) and consequently ρ[l]
f ( respectively λ[l]

f ) are
reformulated as:

ρ f = lim sup
r→∞

log[2] μ f (r)

log r

⎛⎜⎜⎜⎜⎝ respectively λ f = lim inf
r→∞

log[2] μ f (r)

log r

⎞⎟⎟⎟⎟⎠
and

ρ[l]
f = lim sup

r→∞

log[l] μ f (r)

log r

⎛⎜⎜⎜⎜⎝ respectively λ[l]
f = lim inf

r→∞
log[l] μ f (r)

log r

⎞⎟⎟⎟⎟⎠ ,
where l ≥ 1.
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Definition 1.2. The generalized type σ[l]
f and generalized lower type σ[l]

f of an entire
function f are defined as

σ[l]
f = lim sup

r→∞

log[l−1] Mf (r)

rρ f
and σ[l]

f = lim inf
r→∞

log[l−1] Mf (r)

rρ f
, 0 < ρ[l]

f < ∞,

where l ≥ 1. Moreover, when l = 2 then σ[2]
f and σ[2]

f are correspondingly denoted
as σ f and σ f which are respectively known as type and lower type of entire f .

Similarly, extending the notion of weak type as introduced by Datta and Jha
[4], one can define generalized weak type to determine the relative growth of two
entire functions having same non zero finite generalized lower order in the following
manner:

Definition 1.3. The generalized weak type τ[l]
f for l ≥ 1 of an entire function f of finite

positive generalized lower order λ[l]
f are defined by

τ[l]
f = lim inf

r→∞
log[l−1] Mf (r)

rλ f
, 0 < λ[l]

f < ∞.

Also one may define the growth indicator τ[l]
f of an entire function f in the following

way :

τ[l]
f = lim sup

r→∞

log[l−1] Mf (r)

rλ f
, 0 < λ[l]

f < ∞.
For l = 2, the above definition reduces to the classical definition as established by
Datta and Jha [4]. Also τ f and τ f are stand for τ[2]

f and τ[2]
f .

For any two entire functions f and �, Bernal [1], [2] initiated the definition of
relative order of f with respect to �, indicated by ρ�

(
f
)

as follows:

ρ�
(
f
)
= inf

{
μ > 0 : Mf (r) <M� (rμ) for all r > r0

(
μ
)
> 0

}

= lim sup
r→∞

log M−1
� Mf (r)

log r
,

which keeps away from comparing growth just with exp z to find out order of entire
functions as we see in the earlier and of course this definition corresponds with the
classical one [13] for � = exp z.

Analogously, one may define the relative lower order of f with respect to �
denoted by λ�

(
f
)

as

λ�
(
f
)
= lim inf

r→∞
log M−1

� Mf (r)

log r
.

In the case of relative order, it therefore seems reasonable to state suitably an
alternative definition of relative order of entire function in terms of its maximum
terms. Datta and Maji [6] introduced such a definition in the following approach:



298 S.K. Datta, T. Biswas and C. Ghosh

Definition 1.4. [5] The relative order ρ�
(
f
)

and the relative lower order λ�
(
f
)

of
an entire function f with respect to another entire function � are defined as follows:

ρ�
(
f
)
= lim sup

r→∞

logμ−1
� μ f (r)

log r
and λ�

(
f
)
= lim inf

r→∞
logμ−1

� μ f (r)

log r
.

To compare the relative growth of two entire functions having same non zero
finite relative order with respect to another entire function, Roy [9] recently intro-
duced the notion of relative type of two entire functions in the following manner:

Definition 1.5. [9] Let f and � be any two entire functions such that 0 < ρ�
(
f
)
< ∞.

Then the relative type σ�
(
f
)

of f with respect to � is defined as:

σ�
(
f
)
= inf

{
k > 0 : Mf (r) <M�

(
krρ�( f)

)
for all sufficiently large values of r

}

= lim sup
r→∞

M−1
� Mf (r)

rρ�( f)
.

Likewise one can define the relative lower type of an entire function f with respect
to an entire function � denoted by σ�

(
f
)

as follows :

σ�
(
f
)
= lim inf

r→∞
M−1
� Mf (r)

rρ�( f)
, 0 < ρ�

(
f
)
< ∞ .

Analogously to determine the relative growth of two entire functions having
same non zero finite relative lower order with respect to another entire function,
Datta and Biswas [6] introduced the definition of relative weak type of an entire
function f with respect to another entire function � of finite positive relative lower
order λ�

(
f
)

in the following way:

Definition 1.6. [6] The relative weak type τ�
(
f
)
of an entire function f with respect

to another entire function � having finite positive relative lower order λ�
(
f
)

is
defined as:

τ�
(
f
)
= lim inf

r→∞
M−1
� Mf (r)

rλ�( f)
.

Also one may define the growth indicator τ�
(
f
)

of an entire function f with respect
to an entire function � in the following way :

τ�
(
f
)
= lim sup

r→∞

M−1
� Mf (r)

rλ�( f)
, 0 < λ�

(
f
)
< ∞ .

Considering � = exp z one may easily verify that Definition 1.4 and Definition
1.5 coincide with the classical type (lower type) and weak type respectively.

Lahiri and Banerjee [8] gave a more generalized concept of relative order in the
following way:
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Definition 1.7. [8] If l ≥ 1 is a positive integer, then the l- th generalized relative
order of f with respect to �, denoted by ρ[l]

�

(
f
)

is defined by

ρ[l]
�

(
f
)
= inf

{
μ > 0 : Mf (r) <M�

(
exp[l−1] rμ

)
for all r > r0

(
μ
)
> 0

}

= lim sup
r→∞

log[l] M−1
� Mf (r)

log r
.

Clearly ρ[1]
�

(
f
)
= ρ�

(
f
)

and ρ[1]
exp z

(
f
)
= ρ f .

Likewise one can define the generalized relative lower order of f with respect to �
denoted by λ[l]

�

(
f
)

as

λ[l]
�

(
f
)
= lim inf

r→∞
log[l] M−1

� Mf (r)

log r
.

In terms of maximum terms of entire functions Definition 1.2 can be reformu-
lated as:

Definition 1.8. For any positive integer l ≥ 1, the growth indicators ρ[l]
�

(
f
)

and
λ[l]
�

(
f
)

for an entire function f are defined as:

ρ[l]
�

(
f
)
= lim sup

r→∞

log[l] μ−1
� μ f (r)

log r
and λ[l]

�

(
f
)
= lim inf

r→∞
log[l] μ−1

� μ f (r)

log r
.

In fact, Lemma 2.7 states the equivalence of Definition 1.7 and
Definition 1.8.

Now to compare the relative growth of two entire functions having same non
zero finite generalized relative order with respect to another entire function, we intend
to give the definition of generalized relative type and generalized relative lower type of
an entire function with respect to another entire function which are as follows :

Definition 1.9. The generalized relative type σ[l]
f and generalized relative lower type σ[l]

f

of an entire function f are defined as

σ[l]
�

(
f
)
= lim sup

r→∞

log[l−1] M−1
� Mf (r)

rρ
[l]
� ( f)

and

σ[l]
�

(
f
)
= lim inf

r→∞
log[l−1] M−1

� Mf (r)

rρ
[l]
� ( f)

, 0 < ρ[l]
�

(
f
)
< ∞.

For l = 2, Definition 1.9 reduces to Definition 1.5.
Similarly, to determine the relative growth of two entire functions having same

non zero finite generalized relative lower order with respect to another entire function,
one may introduce the concepts of generalized relative weak type of an entire function
with respect to another entire function in the following manner:
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Definition 1.10. The generalized relative weak type τ[l]
�

(
f
)
of an entire function f with

respect to another entire function � having finite positive generalized relative lower
order λ[l]

�

(
f
)

is defined as:

τ[l]
�

(
f
)
= lim inf

r→∞
log[l−1] M−1

� Mf (r)

rλ
[l]
� ( f)

.

Further one may define the growth indicator τ[l]
�

(
f
)

of an entire function f with
respect to an entire function � in the following way :

τ[l]
�

(
f
)
= lim sup

r→∞

log[l−1] M−1
� Mf (r)

rλ
[l]
� ( f)

, 0 < λ[l]
�

(
f
)
< ∞ .

Definition 1.10 also reduces to Definition 1.6 for particular l = 2.
The notions of the growth indicators of entire functions such as order, type and

weak type are classical in complex analysis and during the past decades, several
researchers have already been exploring their research in the area of comparative
growth properties of composite entire functions in different directions using the
classical growth indicators. But at that time, the concepts of relative orders as well as
generalized relative orders and consequently the generalized relative type and generalized
relative weak type of entire functions are not at all known to the researchers of this
area. In this paper, we establish some newly developed results related to the
growth properties of composite entire functions on the basis of their generalized
relative orders, generalized relative type and generalized relative weak type.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [3] If f and � are any two entire functions then for all sufficiently large
values of r,

Mf

(1
8

M�
( r
2

)
−
∣∣∣� (0)

∣∣∣) ≤Mf◦�(r) ≤Mf

(
M� (r)

)
.

Lemma 2.2. [11] Let f and � be any two entire functions Then for every α > 1 and
0 < r < R,

μ f◦� (r) ≤ α
α − 1

μ f

(
αR

R − r
μ� (R)

)
.

Lemma 2.3. [11] If f and � are any two entire functions with � (0) = 0, then for all
sufficiently large values of r,

μ f◦�(r) ≥ 1
2
μ f

(1
8
μ�

( r
4

)
−
∣∣∣� (0)

∣∣∣) .
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Lemma 2.4. [2] Suppose f is an entire function and α > 1, 0 < β < α. Then for all
sufficiently large r,

Mf (αr) ≥ βMf (r).

Lemma 2.5. [5] If f be an entire function and α > 1, 0 < β < α, then for all sufficiently
large r,

μ f (αr) ≥ βμ f (r) .

Lemma 2.6. [7] Let f and h be any two entire functions Then for any α > 1,

(i) M−1
h Mf (r) ≤ μ−1

h

[
α

(α − 1)
μ f (αr)

]
and

(ii) μ−1
h μ f (r) ≤ αM−1

h

[
α

(α − 1)
Mf (r)

]
.

Lemma 2.7. Definition 1.7 and Definition 1.8 are equivalent.

Proof. For any α > 1 and l ≥ 1,we get from Lemma 2.5 and the first part of Lemma
2.6 that

M−1
h Mf (r) ≤ μ−1

h μ f

[
(2α − 1)α

(α − 1)
r

]
.

Thus from above we get that

log[l] M−1
� Mf (r)

log r
≤

log[l] μ−1
h μ f

[
(2α−1)α
(α−1) r

]
log r

i.e.,
log[l] M−1

� Mf (r)

log r
≤

log[l] μ−1
h μ f

[
(2α−1)α
(α−1) r

]
log

[
(2α−1)α
(α−1) r

]
+O(1)

i.e. ρ[l]
�

(
f
)
= lim sup

r→∞

log[l] M−1
� Mf (r)

log r

≤ lim sup
r→∞

log[l] μ−1
h μ f

[
(2α−1)α
(α−1) r

]
log [r] +O(1)

(2.1) i.e., ρ[l]
�

(
f
) ≤ lim sup

r→∞

log[l] μ−1
h μ f (r)

log r

and accordingly

(2.2) λ[l]
�

(
f
) ≤ lim inf

r→∞
log[l] μ−1

h μ f (r)

log r
.
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Similarly, in view of Lemma 2.4 it follows from the second part of Lemma 2.5 that

μ−1
h μ f (r) ≤ αM−1

h Mf

[(2α − 1
α − 1

)
r
]

and from above we obtain that

log[l] μ−1
h μ f (r)

log r
≤

log[l] αM−1
h Mf

[(
2α−1
α−1

)
r
]

log r

i.e.,
log[l] μ−1

h μ f (r)

log r
≤

log[l] M−1
h Mf

[(
2α−1
α−1

)
r
]
+O(1)

log
[(

2α−1
α−1

)
r
]
+O(1)

i.e. ρ[l]
�

(
f
)
= lim sup

r→∞

log[l] M−1
h Mf

[(
2α−1
α−1

)
r
]
+O(1)

log
[(

2α−1
α−1

)
r
]
+O(1)

≥ lim sup
r→∞

log[l] μ−1
h μ f (r)

log r

(2.3) i.e., ρ[l]
�

(
f
) ≥ lim sup

r→∞

log[l] μ−1
h μ f (r)

log r

and consequently

(2.4) λ[l]
�

(
f
) ≥ lim inf

r→∞
log[l] μ−1

h μ f (r)

log r
.

Combining (2.1), (2.3) and (2.2), (2.4) we obtain that

ρ[l]
�

(
f
)
= lim sup

r→∞

log[l] μ−1
� μ f (r)

log r
and λ[l]

�

(
f
)
= lim inf

r→∞
log[l] μ−1

� μ f (r)

log r
.

This proves the lemma.

3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let f , � and h be any three entire functions such that

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) ρ[
p]

h

(
f
)
= ρ�,
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(iii) σ� < ∞, and

(iv) σ[
p]

h

(
f
)
> 0 where p is any positive integer. Then

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩A
ρ[

p]
h

(
f
)
σ�

σ[
p]

h

(
f
) ,A

ρ[
p]

h

(
f
)
σ�

σ[
p]

h

(
f
) ,A

λ[p]
h

(
f
)
σ�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where A =
(
γαβ

)ρ[p]
h ( f) for any β > 1 and γ (α − 1) > α > 1

and

(ii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ[

p]
h

(
f
)
σ�

σ[
p]

h

(
f
) ,
ρ[

p]
h

(
f
)
σ�

σ[
p]

h

(
f
) ,
λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof. As μ−1
h (r) is an increasing function of r, taking R = βr

(
β > 1

)
in Lemma 2.2

and in view of Lemma 2.5 we have for all sufficiently large values of r that

μ f◦� (r) ≤
(
α
α − 1

)
μ f

(
αβ(
β − 1

)μ� (βr)
)

i.e., μ f◦� (r) ≤ μ f

(
(2α − 1)αβ

(α − 1)
(
β − 1

)μ� (βr)
)
.

log[p] μ−1
h μ f◦� (r) ≤ log[p] μ−1

h μ f

(
(2α − 1)αβ

(α − 1)
(
β − 1

)μ� (βr)
)

(3.1)

i.e., log[p] μ−1
h μ f◦� (r) ≤

(
ρ[

p]
h

(
f
)
+ ε

)
logμ�

(
βr
)
+O(1) .

Now we get from above and in view of the inequality μ
(
r, f

) ≤ M
(
r, f

) {
c f . [12]

}
and the condition (ii) for all sufficiently large values of r that

log[p] μ−1
h μ f◦� (r) ≤

(
ρ[p]

h

(
f
)
+ ε

)
log M�

(
βr
)
+O(1)(3.2)

i.e., log[p] μ−1
h μ f◦� (r) ≤

(
ρ[p]

h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρ[p]

h ( f) +O(1) .(3.3)

Also in view of the inequality μ� (r) ≤ M� (r)
{
c f . [12]

}
and the condition (ii) ,we

obtain from (3.1) for a sequence of values of r tending to infinity that

(3.4) log[p] μ−1
h μ f◦� (r) ≤

(
λ[p]

h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρ[p]

h ( f) +O(1)
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and

(3.5) log[p] μ−1
h μ f◦� (r) ≤

(
ρ[

p]
h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρh( f) +O(1) .

Again in view of Lemma 2.5, Lemma 2.6 and the definition of generalized relative
type we get for any γ > α

(α−1) and for a sequence of values of r tending to infinity
that

μ−1
h

[
α

(α − 1)
μ f (αr)

]
≥ M−1

h Mf (r)

i.e., μ−1
h μ f

(
γαr

) ≥ M−1
h Mf (r)

i.e., log[p−1] μ−1
h μ f (r) ≥ log[p−1] M−1

h Mf

(
r
γα

)

(3.6) i.e., log[p−1] μ−1
h μ f (r) ≥

(
σ[

p]
h

(
f
) − ε)

[
r
γα

]ρ[p]
h ( f)

.

Further from the definition of generalized relative lower type, we obtain for any
γ (α − 1) > α > 1 and in view of Lemma 2.5 and Lemma 2.6 for all sufficiently large
values of r that

(3.7) log[p−1] μ−1
h μ f (r) ≥

(
σ[

p]
h

(
f
) − ε)

[
r
γα

]ρ[p]
h ( f)

.

Now from (3.3) and (3.6) , it follows for a sequence of values of r tending to infinity
that

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

(
ρ[

p]
h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρ[p]

h ( f) +O(1)

(
σ[

p]
h

(
f
) − ε) [ r

γα

]ρ[p]
h ( f)

Since ε (> 0) is arbitrary, it follows from above that

(3.8) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (γαβ)ρ[p]
h ( f) ρ

[p]
h

(
f
)
σ�

σ[
p]

h

(
f
) .

Similarly from (3.4) and (3.7) , we obtain for a sequence of values of r tending to
infinity that

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

(
λ[p]

h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρ[p]

h ( f) +O(1)

(
σ[

p]
h

(
f
) − ε) [ r

γα

]ρ[p]
h ( f)
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i.e.,

(3.9) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (γαβ)ρ[p]
h ( f) λ

[p]
h

(
f
)
σ�

σ[
p]

h

(
f
) .

Likewise from (3.5) and (3.7) , it follows that

(3.10) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (γαβ)ρ[p]
h ( f) ρ

[p]
h

(
f
)
σ�

σ[
p]

h

(
f
) .

Thus the first part of the theorem follows from (3.8) , (3.9) and (3.10) .
Since M−1

h (r) is an increasing function of r, by similar reasoning as above the
second part of the theorem follows from the second part of Lemma 2.1 and therefore
its proof is omitted.

In view of Theorem 3.1, the following theorem can be carried out and therefore
its proof is omitted:

Theorem 3.2. Let f , � and h be any three entire functions with

(i) 0 < ρ[
p]

h

(
f
)
< ∞,

(ii) ρ[
p]

h

(
f
)
= ρ�,

(iii) σ� < ∞, and

(iv) σ[
p]

h

(
f
)
> 0 where p is any positive integer > 1. Then

(i) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (γαβ)ρ[p]
h ( f) ρ

[p]
h

(
f
)
σ�

σ[
p]

h

(
f
)

where β > 1 and γ (α − 1) > α > 1

and

(ii) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ ρ
[p]
h

(
f
)
σ�

σ[
p]

h

(
f
) .

Using the notion of generalized relative weak type, we may state the following
two theorems without their proofs as those can be carried out in the line of Theorem
3.1 and Theorem 3.2 respectively.

Theorem 3.3. Let f , � and h be any three entire functions such that

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) λ[p]
h

(
f
)
= λ�,
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(iii) τ� < ∞, and

(iv) τ[
p]

h

(
f
)
> 0 where p is any positive integer. Then

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩B
ρ[

p]
h

(
f
)
τ�

τ[
p]

h

(
f
) ,B

ρ[
p]

h

(
f
)
τ�

τ[
p]

h

(
f
) ,B

λ[p]
h

(
f
)
τ�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where B =
(
γαβ

)λ[p]
h ( f) for β > 1 and γ (α − 1) > α > 1

and

(ii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ[

p]
h

(
f
)
τ�

τ[
p]

h

(
f
) ,
ρ[

p]
h

(
f
)
τ�

τ[
p]

h

(
f
) ,
λ[p]

h

(
f
)
τ�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Theorem 3.4. Let f , � and h be any three entire functions with

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) λ[p]
h

(
f
)
= λ�,

(iii) τ� < ∞, and (iv) τ[
p]

h

(
f
)
> 0 where p is any positive integer > 1. Then

(i) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (γαβ)λ[p]
h ( f) ρ

[p]
h

(
f
)
τ�

τ[
p]

h

(
f
)

where β > 1 and γ (α − 1) > α > 1

and

(ii) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ ρ
[p]
h

(
f
)
τ�

τ[
p]

h

(
f
) .

Theorem 3.5. Let f , � and h be any three entire functions such that

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) ρ[
p]

h

(
f
)
= ρ�,
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(iii) σ� > 0, and (iv) σ[
p]

h

(
f
)
< ∞ where p is any positive integer > 1. Then

(i) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩C
λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
) ,C

λ[p]
h

(
f
)
σ�

σ[
p]

h

(
f
) ,C

ρ[
p]

h

(
f
)
σ�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where C =
(

1
4γβ

)ρ[p]
h ( f)

for β > 1, γ (α − 1) > α > 1

and

(ii) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
) ,
λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
) ,
ρ[

p]
h

(
f
)
σ�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof. Since μ−1
h (r) is an increasing function of r, it follows from Lemma 2.3 and

Lemma 2.5 for all sufficiently large values of r that

μ f◦�(r) ≥ 1
2
μ f

(1
8
μ�

( r
4

)
−
∣∣∣� (0)

∣∣∣) .

log[p] μ−1
h μ f◦�(r) ≥ log[p] μ−1

h μ f

⎛⎜⎜⎜⎜⎝ 1
24
μ�

( r
4

)
−
∣∣∣�(0)

∣∣∣
3

⎞⎟⎟⎟⎟⎠(3.11)

i.e., log[p] μ−1
h μ f◦�(r) ≥

(
λ[p]

h

(
f
) − ε) log

⎛⎜⎜⎜⎜⎝ 1
24
μ�

( r
4

)
−
∣∣∣�(0)

∣∣∣
3

⎞⎟⎟⎟⎟⎠
i.e., log[p] μ−1

h μ f◦�(r) ≥
(
λ[p]

h

(
f
) − ε) logμ�

( r
4

)
+O (1) .

Using the condition ρ[
p]

h

(
f
)
= ρ� and in view of the inequality M� (r) ≤ R

R−rμ� (R){
c f . [12]

}
for R = βr

(
β > 1

)
, we get from above for all sufficiently large values of r

that

(3.12) log[p] μ−1
h μ f◦�(r) ≥

(
λ[p]

h

(
f
) − ε) log M�

(
r

4β

)
+O (1)

(3.13) i.e., log[p] μ−1
h μ f◦�(r) ≥

(
λ[p]

h

(
f
) − ε) (σ� − ε)

[
r

4β

]ρ[p]
h ( f)

+O (1) .

Also, in view of the inequality M� (r) ≤ R
R−rμ� (R)

{
c f . [12]

}
for R = βr

(
β > 1

)
and

the condition (ii) ,it follows from (3.11) for a sequence of values of r tending to
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infinity that

(3.14) log[p] μ−1
h μ f◦� (r) ≥

(
λ[p]

h

(
f
) − ε) (σ� − ε)

[
r

4β

]ρ[p]
h ( f)

+O(1)

and

(3.15) log[p] μ−1
h μ f◦� (r) ≥

(
ρ[

p]
h

(
f
) − ε) (σ� − ε)

[
r

4β

]ρ[p]
h ( f)

+O(1) .

Again in view of Lemma 2.4 and for any γ (α − 1) > α > 1,we get from Lemma 2.6
for a sequence of values of r tending to infinity that

log[p−1] μ−1
h μ f (r) ≤ log[p−1] αM−1

h Mf
(
γr
)

i.e., log[p−1] μ−1
h μ f (r) ≤

(
σ[

p]
h

(
f
)
+ ε

) [
γr
]ρ[p]

h ( f) +O(1).(3.16)

Also for any γ (α − 1) > α > 1,we obtain from the definition of generalized relative
type and in view of Lemma 2.4 and Lemma 2.6 for all sufficiently large values of r
that

(3.17) log[p−1] μ−1
h μ f (r) ≤

(
σ[

p]
h

(
f
)
+ ε

) [
γr
]ρ[p]

h ( f) +O(1) .

Now from (3.13) and (3.16) , it follows for a sequence of values of r tending to
infinity that

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥

(
λ[p]

h

(
f
) − ε) (σ� − ε) [ r

4β

]ρ[p]
h ( f)

+O (1)
(
σ[

p]
h

(
f
)
+ ε

) [
γr
]ρ[p]

h ( f) +O(1)

As ε (> 0) is arbitrary, it follows from above that

(3.18) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4γβ

)ρ[p]
h ( f) λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
) .

Similarly from (3.14) and (3.17) , we obtain for a sequence of values of r tending to
infinity that

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥

(
λ[p]

h

(
f
) − ε) (σ� − ε) [ r

4β

]ρ[p]
h ( f)

+O(1)
(
σ[

p]
h

(
f
)
+ ε

) [
γr
]ρ[p]

h ( f) +O(1)
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i.e.,

(3.19) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4γβ

)ρ[p]
h ( f) λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
) .

Likewise from (3.15) and (3.17) , it follows that

(3.20) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4γβ

)ρ[p]
h ( f) ρ[

p]
h

(
f
)
σ�

σ[
p]

h

(
f
) .

Thus the first part of the theorem follows from (3.18) , (3.19) and (3.20) .

Since M−1
h (r) is an increasing function of r, by similar reasoning as above the

second part of the theorem follows from the first part of Lemma 2.1 and therefore
its proof is omitted.

In view of Theorem 3.5 the following theorem can be carried out and therefore
its proof is omitted:

Theorem 3.6. Let f , � and h be any three entire functions with

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) ρ[
p]

h

(
f
)
= ρ�,

(iii) σ� > 0 and

(iv) σ[
p]

h

(
f
)
< ∞ where p is any positive integer > 1. Then

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4γβ

)ρ[p]
h ( f) λ[p]

h

(
f
)
σ�

σ[
p]

h

(
f
)

where β > 1, γ (α − 1) > α > 1

and

(ii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≥ λ
[p]
h

(
f
)
σ�

σ[
p]

h

(
f
) .

Now using the notion of generalized relative weak type, one may state the
following two theorems without their proofs as those can be carried out in the line
of Theorem 3.5 and Theorem 3.6 respectively.

Theorem 3.7. Let f , � and h be any three entire functions such that

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) λ[p]
h

(
f
)
= λ�,
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(iii) τ� > 0, and

(iv) τ[
p]

h

(
f
)
< ∞ where p is any positive integer > 1. Then

(i) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩D
λ[p]

h

(
f
)
τ�

τ[
p]

h

(
f
) ,D

λ[p]
h

(
f
)
τ�

τ[
p]

h

(
f
) ,D

ρ[
p]

h

(
f
)
τ�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

where D =
(

1
4γβ

)λ[p]
h ( f)

for β > 1, γ (α − 1) > α > 1

and

(ii) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ[p]

h

(
f
)
τ�

τ[
p]

h

(
f
) ,
λ[p]

h

(
f
)
τ�

τ[
p]

h

(
f
) ,
ρ[

p]
h

(
f
)
τ�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Theorem 3.8. Let f , � and h be any three entire functions with

(i) 0 < λ[p]
h

(
f
)
< ∞,

(ii) λ[p]
h

(
f
)
= λ�,

(iii) τ� > 0, and (iv) τ[
p]

h

(
f
)
< ∞ where p is any positive integer > 1. Then

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4γβ

)λ[p]
h ( f) λ[p]

h

(
f
)
τ�

τ[
p]

h

(
f
)

where β > 1, γ (α − 1) > α > 1

and

(ii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≥ λ
[p]
h

(
f
)
τ�

τ[
p]

h

(
f
) .

Theorem 3.9. Let f , �, h and k be any four entire functions such that

(i) 0 < σ[
q]

k

(
f
) ≤ σ[q]

k

(
f
)
< ∞,

(ii) 0 < σ[
p]

h

(
f ◦ �) ≤ σ[p]

h

(
f ◦ �) < ∞ and
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(iii) ρ[
p]

h

(
f ◦ �) = ρ[q]

k

(
f
)

where p, q are any two positive integers > 1. Then

(i)
( 1
E

)ρ[q]
k ( f) σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
f
) ≤ lim inf

r→∞
log[p−1] μ−1

h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤ Eρ
[q]
k ( f)σ

[p]
h

(
f ◦ �)

σ[
q]

k

(
f
) and

( 1
E

)ρ[q]
k ( f) σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
f
) ≤ lim sup

r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤ Eρ
[q]
k ( f)σ

[p]
h

(
f ◦ �)

σ[
q]

k

(
f
)

where E = γ2α for γ (α − 1) > α > 1

and

(ii)
σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
f
) ≤ lim inf

r→∞
log[p−1] M−1

h Mf◦� (r)

log[q−1] M−1
k Mf (r)

≤ σ
[p]
h

(
f ◦ �)

σ[
q]

k

(
f
)

≤ lim sup
r→∞

log[p−1] M−1
h Mf◦� (r)

log[q−1] M−1
k Mf (r)

≤ σ
[p]
h

(
f ◦ �)

σ[
q]

k

(
f
) .

Proof. For anyγ (α − 1) > α > 1 we obtain from the definition of generalized relative
type and in view of Lemma 2.5 and Lemma 2.6 for all sufficiently large values of r
that

log[p−1] μ−1
h μ f◦� (r) ≥ log[p−1] M−1

h Mf

(
r
γα

)

i.e., log[p−1] μ−1
h μ f◦� (r) ≥

(
σ[

p]
h

(
f ◦ �) − ε)

(
r
γα

)ρ[p]
h ( f◦�)

.(3.21)

and

log[q−1] μ−1
k μ f (r) ≤ log[q−1]

[
αM−1

k

(
α

(α − 1)
Mf (r)

)]

i.e., log[q−1] μ−1
k μ f (r) ≤ log[q−1] M−1

k Mf
(
γr
)
+O(1)

i.e., log[q−1] μ−1
k μ f (r) ≤

(
σ[

q]
k

(
f
)
+ ε

) (
γr
)ρ[q]

k ( f) +O(1).(3.22)

Now from (3.21), (3.22) and in view of the condition ρ[
p]

h

(
f ◦ �) = ρ[q]

k

(
f
)
, it follows

for all sufficiently large values of r that

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

�

(
σ[

p]
h

(
f ◦ �) − ε) ( r

γα

)ρ[p]
h ( f◦�)

(
σ[

q]
k

(
f
)
+ ε

) (
γr
)ρ[q]

k ( f) +O(1)
.
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As ε (> 0) is arbitrary , we obtain from above that

(3.23) lim inf
r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

�
(

1
γ2α

)ρ[q]
k ( f) σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
f
) .

Again we obtain for a sequence of values of r tending to infinity that

(3.24) log[p−1] μ−1
h μ f◦� (r) ≤

(
σ[

p]
h

(
f ◦ �) + ε) (γr)ρ[p]

h ( f◦�) +O(1)

and for all sufficiently large values of r that

(3.25) log[q−1] μ−1
k μ f (r) �

(
σ[

q]
k

(
f
) − ε)

(
r
γα

)ρ[q]
k ( f)

.

Combining the condition ρ[
p]

h

(
f ◦ �) = ρ[q]

k

(
f
)
, (3.24) and (3.25) we get for a se-

quence of values of r tending to infinity that

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤

(
σ[

p]
h

(
f ◦ �) + ε) (γr)ρ[p]

h ( f◦�) +O(1)

(
σ[

q]
k

(
f
) − ε) ( r

γα

)ρ[q]
k ( f)

.

Since ε (> 0) is arbitrary, it follows from above that

(3.26) lim inf
r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤
(
γ2α

)ρ[q]
k ( f) σ

[p]
h

(
f ◦ �)

σ[
q]

k

(
f
) .

Also for a sequence of values of r tending to infinity that

(3.27) log[q−1] μ−1
k μ f (r) ≤

(
σ[

q]
k

(
f
)
+ ε

) (
γr
)ρ[q]

k ( f) +O(1) .

Now from (3.21), (3.27) and the condition ρ[
p]

h

(
f ◦ �) = ρ[q]

k

(
f
)
, we obtain for a

sequence of values of r tending to infinity that

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≥

(
σ[

p]
h

(
f ◦ �) − ε) ( r

γα

)ρ[p]
h ( f◦�)

(
σ[

q]
k

(
f
)
+ ε

) (
γr
)ρ[q]

k ( f) +O(1)
.

As ε (> 0) is arbitrary, we get from above that

(3.28) lim sup
r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≥
(

1
γ2α

)ρ[q]
k ( f) σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
f
) .
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Also for all sufficiently large values of r ,

(3.29) log[p−1] μ−1
h μ f◦� (r) ≤

(
σ[

p]
h

(
f ◦ �) + ε) (γr)ρ[p]

h ( f◦�) +O(1) .

As the condition ρ[
p]

h

(
f ◦ �) = ρ[q]

k

(
f
)
, it follows from (3.25) and (3.29) for all

sufficiently large values of r that

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤

(
σ[

p]
h

(
f ◦ �) + ε) (γr)ρ[p]

h ( f◦�) +O(1)

(
σ[

q]
k

(
f
) − ε) ( r

γα

)ρ[q]
k ( f)

.

Since ε (> 0) is arbitrary, we obtain that

(3.30) lim sup
r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤
(
γ2α

)ρ[q]
k ( f) σ

[p]
h

(
f ◦ �)

σ[
q]

k

(
f
) .

Thus the first part of the theorem follows from (3.23) , (3.26) , (3.28) and (3.30) .
Similarly, the second part of the theorem can be established.

The following theorem can be proved in the line of Theorem 3.9 and so its proof
is omitted.

Theorem 3.10. Let f , �, h and k be any four entire functions with

(i) 0 < σ[
q]

k

(
�
) ≤ σ[q]

k

(
�
)
< ∞,

(ii) 0 < σ[
p]

h

(
f ◦ �) ≤ σ[p]

h

(
f ◦ �) < ∞ and

(iii) ρ[
p]

h

(
f ◦ �) = ρ[q]

k

(
�
)

where p, q are any positive integers > 1. Then

(i)
( 1
E

)ρ[q]
k (�) σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
�
) ≤ lim inf

r→∞
log[p−1] μ−1

h μ f◦� (r)

log[q−1] μ−1
k μ� (r)

≤ Eρ
[q]
k (�)σ

[p]
h

(
f ◦ �)

σ[
q]

k

(
�
) and

( 1
E

)ρ[q]
k (�) σ[

p]
h

(
f ◦ �)

σ[q]
k

(
�
) ≤ lim sup

r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ� (r)

≤ Eρ
[q]
k (�)σ

[p]
h

(
f ◦ �)

σ[q]
k

(
�
)

where E = γ2α for γ (α − 1) > α > 1

and

(ii)
σ[

p]
h

(
f ◦ �)

σ[
q]

k

(
�
) ≤ lim inf

r→∞
log[p−1] M−1

h Mf◦� (r)

log[q−1] M−1
k M� (r)

≤ σ
[p]
h

(
f ◦ �)

σ[
q]

k

(
�
)

≤ lim sup
r→∞

log[p−1] M−1
h Mf◦� (r)

log[q−1] M−1
k M� (r)

≤ σ
[p]
h

(
f ◦ �)

σ[
q]

k

(
�
) .
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Using the notion of generalized relative weak type, we may state the following
two theorems without their proofs because those can be carried out in the line of
Theorem 3.9 and Theorem 3.10 respectively.

Theorem 3.11. Let f , �, h and k be any four entire functions such that

(i) 0 < τ[
q]

k

(
f
) ≤ τ[q]

k

(
f
)
< ∞,

(ii) 0 < τ[
p]

h

(
f ◦ �) ≤ τ[p]

h

(
f ◦ �) < ∞ and

(iii) λ[p]
h

(
f ◦ �) = λ[q]

k

(
f
)

where p, q are any positive integers > 1. Then

(i)
( 1
E

)λ[q]
k ( f) τ[

p]
h

(
f ◦ �)

τ[
q]

k

(
f
) ≤ lim inf

r→∞
log[p−1] μ−1

h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤ Eλ
[q]
k ( f) τ

[p]
h

(
f ◦ �)

τ[
q]

k

(
f
) and

( 1
E

)λ[q]
k ( f) τ[

p]
h

(
f ◦ �)

τ[
q]

k

(
f
) ≤ lim sup

r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ f (r)

≤ Eλ
[q]
k ( f) τ

[p]
h

(
f ◦ �)

τ[
q]

k

(
f
)

where E = γ2α for γ (α − 1) > α > 1

and

(ii)
τ[

p]
h

(
f ◦ �)

τ[
q]

k

(
f
) ≤ lim inf

r→∞
log[p−1] M−1

h Mf◦� (r)

log[q−1] M−1
k Mf (r)

≤ τ
[p]
h

(
f ◦ �)

τ[
q]

k

(
f
)

≤ lim sup
r→∞

log[p−1] M−1
h Mf◦� (r)

log[q−1] M−1
k Mf (r)

≤ τ
[p]
h

(
f ◦ �)

τ[
q]

k

(
f
) .

Theorem 3.12. Let f , �, h and k be any four entire functions with

(i) 0 < τ[
q]

k

(
�
) ≤ τ[q]

k

(
�
)
< ∞,

(ii) 0 < τ[
p]

h

(
f ◦ �) ≤ τ[p]

h

(
f ◦ �) < ∞ and

(iii) λ[p]
h

(
f ◦ �) = λ[q]

k

(
�
)

where p, q are any two positive integers > 1.
Then

(i)
( 1
E

)λ[q]
k (�) τ[

p]
h

(
f ◦ �)

τ[
q]

k

(
�
) ≤ lim inf

r→∞
log[p−1] μ−1

h μ f◦� (r)

log[q−1] μ−1
k μ� (r)

≤ Eλ
[q]
k (�) τ

[p]
h

(
f ◦ �)

τ[
q]

k

(
�
) and

( 1
E

)λ[q]
k (�) τ[

p]
h

(
f ◦ �)

τ[
q]

k

(
�
) ≤ lim sup

r→∞

log[p−1] μ−1
h μ f◦� (r)

log[q−1] μ−1
k μ� (r)

≤ Eλ
[q]
k (�) τ

[p]
h

(
f ◦ �)

τ[
q]

k

(
�
)

where E = γ2α for γ (α − 1) > α > 1
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and

(ii)
τ[

p]
h

(
f ◦ �)

τ[
q]

k

(
�
) ≤ lim inf

r→∞
log[p−1] M−1

h Mf◦� (r)

log[q−1] M−1
k M� (r)

≤ τ
[p]
h

(
f ◦ �)

τ[
q]

k

(
�
)

≤ lim sup
r→∞

log[p−1] M−1
h Mf◦� (r)

log[q−1] M−1
k M� (r)

≤ τ
[p]
h

(
f ◦ �)

τ[
q]

k

(
�
) .

Theorem 3.13. Let f , � and h be any three entire functions such that

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) 0 < σ[
q]
� ≤ σ[q]

� < ∞,
(iii) 0 < σ[

p]
h

(
f
) ≤ σ[p]

h

(
f
)
< ∞ and (iv) ρ[

p]
h

(
f
)
= ρ[

q]
� where p, q are any positive

integers with q > 2. Then

(i) Fρ
[p]
h ( f) σ

[q]
�

σ[
p]

h

(
f
) ≤ lim inf

r→∞
log[p+q−2] μ−1

h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩Gρ
[p]
h ( f) σ

[q]
�

σ[
p]

h

(
f
) ,Gρ[

p]
h ( f) σ

[q]
�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ and

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩Fρ
[p]
h ( f) σ

[q]
�

σ[
p]

h

(
f
) , Fρ[

p]
h ( f) σ

[q]
�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤

lim sup
r→∞

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ Gρ
[p]
h ( f) σ

[q]
�

σ[
p]

h

(
f
)

where F =
1

4βγ
and G = αβγ for β > 1 and γ (α − 1) > α > 1

and

(ii)
σ[

q]
�

σ[
p]

h

(
f
) ≤ lim inf

r→∞
log[p+q−2] M−1

h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ[

q]
�

σ[
p]

h

(
f
) ,
σ[

q]
�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ[

q]
�

σ[
p]

h

(
f
) ,
σ[

q]
�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ lim sup
r→∞

log[p+q−2] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ σ[
q]
�

σ[
p]

h

(
f
) .



316 S.K. Datta, T. Biswas and C. Ghosh

Proof. For any β > 1, it follows from (3.2) and in view of the condition ρ[
p]

h

(
f
)
= ρ[

q]
�

for all sufficiently large values of r that

log[p+q−2] μ−1
h μ f◦� (r) ≤ log[q−1] M�

(
βr
)
+O(1)

i.e., log[p+q−2] μ−1
h μ f◦� (r) ≤

(
σ[

q]
� + ε

) [
βr
]ρ[p]

h ( f) +O(1)(3.31)

and for a sequence of values of r that

(3.32) log[p+q−2] μ−1
h μ f◦� (r) ≤

(
σ[

q]
� + ε

) [
βr
]ρ[p]

h ( f) +O (1) .

Further in view of the condition ρ[
p]

h

(
f
)
= ρ[

q]
� , it follows from (3.12) for a sequence

of values of r that

log[p+q−2] μ−1
h μ f◦�(r) ≥ log[q−1] M�

(
r

4β

)
+O (1)

i.e., log[p+q−2] μ−1
h μ f◦�(r) ≥

(
σ[

q]
� − ε

) [ r
4β

]ρ[p]
h ( f)

+O (1)(3.33)

and for all sufficiently large values of r that

(3.34) log[p+q−2] μ−1
h μ f◦�(r) ≥

(
σ[

q]
� − ε

) [ r
4β

]ρ[p]
h ( f)

+O (1) .

Therefore from (3.7) and (3.31) , we obtain for any γ (α − 1) > α > 1 and all suffi-
ciently large values of r that

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

(
σ[

q]
� + ε

) [
βr
]ρ[p]

h ( f) +O(1)

(
σ[

p]
h

(
f
) − ε) [ r

γα

]ρ[p]
h ( f)

i.e., lim sup
r→∞

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (
αβγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) .(3.35)

Similarly, from (3.31) and (3.6) we have for a sequence of values of r tending to
infinity that

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

(
σ[

q]
� + ε

) [
βr
]ρ[p]

h ( f) +O(1)

(
σ[

p]
h

(
f
) − ε) [ r

γα

]ρ[p]
h ( f)

i.e., lim inf
r→∞

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (
αβγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) .(3.36)
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Analogously we get from (3.32) and (3.7) for a sequence of values of r tending to
infinity that

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤

(
σ[

q]
� + ε

) [
βr
]ρ[p]

h ( f) +O (1)

(
σ[

p]
h

(
f
) − ε) [ r

γα

]ρ[p]
h ( f)

i.e., lim inf
r→∞

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ (
αβγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) .(3.37)

Now from (3.36) and (3.37) , it follows that

lim inf
r→∞

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
αβγ

)ρ[p]
h ( f) · σ

[q]
�

σ[p]
h

(
f
) , (αβγ)ρ

[p]
h ( f) σ[

q]
�

σ[p]
h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(3.38)

Further from (3.33) and (3.17) , we get for a sequence of values of r tending to
infinity that

log[p+q−2] μ−1
h μ f◦�(r)

log[p−1] μ−1
h μ f (r)

≥

(
σ[

q]
� − ε

) [
r

4β

]ρ[p]
h ( f)

+O (1)
(
σ[

p]
h

(
f
)
+ ε

) (
γr
)ρ[p]

h ( f) +O(1)

i.e.,

(3.39) lim sup
r→∞

log[p+q−2] μ−1
h μ f◦�(r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4βγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) .

Likewise from (3.34) and (3.16) , we obtain for a sequence of values of r tending to
infinity that

log[p+q−2] μ−1
h μ f◦�(r)

log[p−1] μ−1
h μ f (r)

≥

(
σ[

q]
� − ε

) [
r

4β

]ρ[p]
h ( f)

+O (1)
(
σ[

p]
h

(
f
)
+ ε

) (
γr
)ρ[p]

h ( f) +O(1)

i.e.,

(3.40) lim sup
r→∞

log[p+q−2] μ−1
h μ f◦�(r)

log[p−1] μ−1
h μ f (r)

≥
(

1
4βγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) .
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Thus from (3.39) and (3.40) , it follows that

lim sup
r→∞

log[p+q−2] μ−1
h μ f◦�(r)

log[p−1] μ−1
h μ f (r)

≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1
4βγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) ,
(

1
4βγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(3.41)

Also from (3.34) and (3.17) , we obtain for all sufficiently large values of r that

log[p+q−2] μ−1
h μ f◦�(r)

log[p−1] μ−1
h μ f (r)

≥

(
σ[

q]
� − ε

) [
r

4β

]ρ[p]
h ( f)

+O (1)
(
σ[

p]
h

(
f
)
+ ε

) (
γr
)ρ[p]

h ( f) +O(1)

i.e.,

(3.42) lim inf
r→∞

log[p+q−1] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f (rA)

≥
(

1
4βγ

)ρ[p]
h ( f) σ[

q]
�

σ[
p]

h

(
f
) .

Therefore the first part of the theorem follows from (3.35) , (3.38) , (3.41) and (3.42) .
Using the similar technique as above, the second part of the theorem follows from
Lemma 2.1 and therefore its proof is omitted.

In the line of Theorem 3.9, one can easily verify the following theorem and
therefore its proof is omitted.

Theorem 3.14. Let f , � and h be any three entire functions with

(i) 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
< ∞,

(ii) 0 < τ[
q]
� ≤ τ[q]

� < ∞,
(iii) 0 < τ[

p]
h

(
f
) ≤ τ[p]

h

(
f
)
< ∞ and

(iv) λ[p]
h

(
f
)
= λ[q]

� where p, q are any two positive integers with q > 2.
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Then

(i) Fλ
[p]
h ( f) τ

[q]
�

τ[
p]

h

(
f
) ≤ lim inf

r→∞
log[p+q−2] μ−1

h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩Gλ
[p]
h ( f) τ

[q]
�

τ[p]
h

(
f
) ,Gλ[p]

h ( f) τ
[q]
�

τ[p]
h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ and

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩Fλ
[p]
h ( f) τ

[q]
�

τ[
p]

h

(
f
) , Fλ[p]

h ( f) τ
[q]
�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤

lim sup
r→∞

log[p+q−2] μ−1
h μ f◦� (r)

log[p−1] μ−1
h μ f (r)

≤ Gλ
[p]
h ( f) τ

[q]
�

τ[
p]

h

(
f
)

where F =
1

4βγ
and G = αβγ for β > 1 and γ (α − 1) > α > 1

and

(ii)
τ[

q]
�

τ[p]
h

(
f
) ≤ lim inf

r→∞
log[p+q−2] M−1

h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ[

q]
�

τ[
p]

h

(
f
) ,
τ[

q]
�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ≤ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
τ[

q]
�

τ[
p]

h

(
f
) ,
τ[

q]
�

τ[
p]

h

(
f
)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

≤ lim sup
r→∞

log[p+q−2] M−1
h Mf◦� (r)

log[p−1] M−1
h Mf (r)

≤ τ[
q]
�

τ[
p]

h

(
f
) .

Theorem 3.15. Let f , � and h be any three entire functions such that 0 < λ[p]
h

(
f
) ≤

ρ[
p]

h

(
f
)
< ∞ and σ� < ∞ where p is any positive integer. Then for any β > 1,

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ[

p]
h

(
f
)
σ�

λ[p]
h

(
f
) , σ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(ii) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤

ρ[
p]

h

(
f
)
σ�

λ[p]
h

(
f
) ,

(iii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rρ�

) ≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ[

p]
h

(
f
)
σ�

λ[p]
h

(
f
) , σ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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and

(iv) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rρ�

) ≤ ρ
[p]
h

(
f
)
σ�

λ[p]
h

(
f
) .

Proof. In view of Definition 1.8, we get for a sequence of values of r tending to
infinity that

(3.43) log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≥ (ρ[p]

h

(
f
) − ε) [βr]ρ�

and for all sufficiently large values of r that

(3.44) log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≥ (λ[p]

h

(
f
) − ε) [βr]ρ� .

Now from (3.3) and (3.43) , it follows for a sequence of values of r tending to infinity
that

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤

(
ρ[

p]
h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρ� +O(1)(

ρ[
p]

h

(
f
) − ε) [βr]ρ� .

Since ε (> 0) is arbitrary it follows from above that

(3.45) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤ σ�.

Likewise from (3.5) and (3.44) , it follows for a sequence of values of r tending to
infinity that

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤

(
ρ[

p]
h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρh( f) +O(1)(

λ[p]
h

(
f
) − ε) [βr]ρ�

i.e.,

(3.46) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤

ρ[p]
h

(
f
)
σ�

λ[p]
h

(
f
) .

Similarly from (3.3) and (3.44) ,we obtain for all sufficiently large values of r that

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤

(
ρ[

p]
h

(
f
)
+ ε

) (
σ� + ε

) [
βr
]ρ� +O(1)(

λ[p]
h

(
f
) − ε) [βr]ρ�
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i.e.,

(3.47) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)ρ�) ≤

ρ[
p]

h

(
f
)
σ�

λ[p]
h

(
f
) .

Thus the first and second part of the theorem follows from (3.45) , (3.46) and
(3.47) .

Theorem 3.16. Let f , � and h be any three entire functions with 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
<

∞ and σ� > 0 where p is any positive integer. Then for any β > 1,

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥ λ
[p]
h

(
f
)
σ�

ρ[
p]

h

(
f
) ,

(ii) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ[p]

h

(
f
)
σ�

ρ[
p]

h

(
f
) , σ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(iii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rρ�

) ≥ λ
[p]
h

(
f
)
σ�

ρ[
p]

h

(
f
)

and

(iv) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rρ�

) ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ[p]

h

(
f
)
σ�

ρ[
p]

h

(
f
) , σ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof. In view of Definition 1.8, we obtain for a sequence of values of r tending to
infinity that

(3.48) log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�)
≤
(
λ[p]

h

(
f
)
+ ε

) [ r
4β

]ρ�
.

Also for all sufficiently large values of r that

(3.49) log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�)
≤
(
ρ[

p]
h

(
f
)
+ ε

) [ r
4β

]ρ�
.

Now from (3.13) and (3.48) , it follows for a sequence of values of r tending to
infinity that

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥
(
λ[p]

h

(
f
) − ε) (σ� − ε) [ r

4β

]ρ�
+O (1)(

λ[p]
h

(
f
)
+ ε

) [
r

4β

]ρ�
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As ε (> 0) is arbitrary, it follows from above that

(3.50) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥ σ�.
Similarly from (3.14) and (3.49) , we obtain for a sequence of values of r tending to
infinity that

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥
(
λ[p]

h

(
f
) − ε) (σ� − ε) [ r

4β

]ρ[p]
h ( f)

+O(1)(
ρ[

p]
h

(
f
)
+ ε

) [
r

4β

]ρ�

(3.51) i.e., lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥ λ
[p]
h

(
f
)
σ�

ρ[
p]

h

(
f
) .

Likewise from (3.13) and (3.49) , we have for all sufficiently large values of r that

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥
(
λ[p]

h

(
f
) − ε) (σ� − ε) [ r

4β

]ρ�
+O (1)(

ρ[
p]

h

(
f
)
+ ε

) [
r

4β

]ρ�
i.e.,

(3.52) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)ρ�) ≥ λ
[p]
h

(
f
)
σ�

ρ[
p]

h

(
f
) .

Thus the first part of the theorem follows from (3.50) , (3.51) and (3.52) .
Since M−1

h (r) is an increasing function of r, by similar reasoning as above the
second part of the theorem follows from the first part of Lemma 2.1 and therefore
its proof is omitted.

Using the same technique as above, the third and fourth part of the theorem fol-
lows from the second part of Lemma 2.1 and therefore their proofs are omitted.

Using the notion of weak type, we may state the following theorem without its
proof because it can be carried out in the line of Theorem 3.15 and Theorem 3.16
respectively.

Theorem 3.17. Let f , � and h be any three entire functions such that 0 < λ[p]
h

(
f
) ≤

ρ[
p]

h

(
f
)
< ∞ and τ� < ∞ where p is any positive integer. Then for any β > 1,

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)λ�) ≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ[

p]
h

(
f
)
τ�

λ[p]
h

(
f
) , τ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
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(ii) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
βr
)λ�) ≤

ρ[
p]

h

(
f
)
τ�

λ[p]
h

(
f
) ,

(iii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rλ�

) ≤ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ[

p]
h

(
f
)
τ�

λ[p]
h

(
f
) , τ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and

(iv) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rλ�

) ≤ ρ
[p]
h

(
f
)
τ�

λ[p]
h

(
f
) .

Theorem 3.18. Let f , � and h be any three entire functions with 0 < λ[p]
h

(
f
) ≤ ρ[p]

h

(
f
)
<

∞ and τ� > 0 where p is any positive integer. Then for any β > 1,

(i) lim inf
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)λ�) ≥
λ[p]

h

(
f
)
τ�

ρ[
p]

h

(
f
) ,

(ii) lim sup
r→∞

log[p] μ−1
h μ f◦� (r)

log[p] μ−1
h μ f

(
exp

(
r

4β

)λ�) ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ[p]

h

(
f
)
τ�

ρ[
p]

h

(
f
) , τ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(iii) lim inf
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rλ�

) ≥ λ
[p]
h

(
f
)
τ�

ρ[
p]

h

(
f
)

and

(iv) lim sup
r→∞

log[p] M−1
h Mf◦� (r)

log[p] M−1
h Mf

(
exp rλ�

) ≥ max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ[p]

h

(
f
)
τ�

ρ[
p]

h

(
f
) , τ�

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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