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MULTIVALUED FIXED POINT RESULTS AND STABILITY OF FIXED POINT
SETS IN METRIC SPACES

Binayak S. Choudhury, Nikhilesh Metiya, T. Som, C. Bandyopadhyay

Abstract. In this paper we establish certain multivalued fixed point results for mappings
satisfying rational type almost contractions involving a control function in the framework
of metric spaces. The main result is supported with an example. We use the Hausdorff
distance in our theorems. We also study the stability of fixed point sets of the above
mentioned set valued contractions.
Keywords: Hausdorff metric; Multivalued mapping; Rational type almost contraction;
Fixed point; Stability.

1. Introduction

Metric fixed point theory is widely recognized to have been originated in the
work of S. Banach in 1922 [5], where he proved the famous contraction mapping
principle. Banach’s contraction mapping principle has very few parallels in modern
science, in terms of the various influences it has had in the developments of different
branches of mathematics and of physical science in general. Over the years, metric
fixed point theory has developed in different directions. A comprehensive account
of this development is provided in the handbook entitled by Kirk and Sims [29].
Further fixed point and some related results are described in [20, 33, 34, 35].

The concept of almost contractions was introduced by Berinde [7, 8]. It was
shown in [7] that any strict contraction, the Kannan [27] and Zamfirescu [41]
mappings, as well as a large class of quasi-contractions, are all almost contractions.
Almost contractions and its generalizations were further considered in several
works, such as [1, 4, 13, 14, 16].

Dass and Gupta [19] generalized the Banach’s contraction mapping principle
by using a contractive condition of rational type. Fixed point theorems for con-
tractive type conditions satisfying rational inequalities in metric spaces have been
developed in a number of works [2, 11, 12, 24, 25, 26, 31].
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Multivalued analysis is an important extension of the general concepts studied
in mathematical analysis. Several aspects of this study are described by Aubin et al
in their book [3]. Fixed point theory for multivalued operators is an important topic
of set-valued analysis. Nadler [37] extended the Banach contraction principle to set-
valued mappings by using the Hausdorffmetric. Inspired by the results of Nadler,
the fixed point theory of set-valued contraction using this Hausdorffmetric has been
further developed in different directions by many authors [17, 18, 22, 23, 28, 39].

Stability is a concept associated with the limiting behaviors of a system. It has
been studied in the contexts of both discrete and continuous dynamical systems
[38, 40]. The study of the relationship between the convergence of a sequence of
mappings and their fixed points, known as the stability of fixed points, has also
been widely studied in various settings [6, 9, 10, 15, 21, 30, 32, 36]. The fixed point
sets of a sequence of mappings are said to be stable if they converge to the set of fixed
points of the limit mapping in the Hausdorffmetric. Multivalued mappings often
have more fixed points than their single-valued counterparts [21, 30, 32, 36, 37].
Therefore, the set of fixed points of multivalued mappings becomes larger and
hence more interesting for the study of stability.

The purpose of this paper is to establish the existence of fixed points of certain
multivalued mappings in metric spaces. The mappings are assumed to satisfy
certain rational type almost contractive inequalities. In Section 2 we describe some
mathematical preliminaries which we use in our results in Sections 3 and 4. In
Section 3 we prove a fixed point result for multivalued mapping satisfy rational
type almost contractive inequalities. In Section 4 we investigate the stability of
fixed point sets of above mentioned set valued contractions.

2. Mathematical Preliminaries

The following are the concepts from set valued analysis which we shall use in
this paper. Let (X, d) be a metric space. Then

N(X) = {A : A is a non-empty subset of X},
B(X) = {A : A is a non-empty bounded subset of X},
CB(X) = {A : A is a non-empty closed and bounded subset of X} and
C(X) = {A : A is a non-empty compact subset of X}.
For x ∈ X and B ∈ N(X), the function D(x, B), and for A, B ∈ CB(X), the function

H(A, B) are defined as follows:

D(x, B) = inf {d(x, y) : y ∈ B}
and

H(A, B) = max {sup
x∈A

D(x, B), sup
y∈B

D(y, A)}.

H is known as the Hausdorff metric induced by d on CB(X) [37]. Further, if (X, d)
is complete then (CB(X), H) is also complete.
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Nadler [37] established the following Lemma.

Lemma 2.1. [37] Let (X, d) be a metric space and A, B ∈ CB(X). Let q > 1. Then for
each x ∈ A, there exists y ∈ B such that d(x, y) ≤ q H(A, B).

In [15, 37] it is shown that the above Lemma is also valid for q≥1, if A,B∈C(X).

Lemma 2.2. [15, 37] Let (X, d) be a metric space and A, B ∈ C(X). Let q ≥ 1. Then
for each x ∈ A, there exists y ∈ B such that d(x, y) ≤ q H(A, B).

The following is a consequence of Lemma 2.2.

Lemma 2.3. Let A and B be two nonempty compact subsets of a metric space (X, d)
and T : A → C(B) be a multivalued mapping. Let q ≥ 1. Then for a, b ∈ A and
x ∈ Ta, there exists a y ∈ Tb such that d(x, y) ≤ q H(Ta, Tb).

Definition 2.1. Let X be a nonempty set, f : X −→ X a single-valued mapping and
T : X −→ N(X) a multivalued mapping. A point x ∈ X is a fixed point of f (resp. T
) iff x = f x (resp. x ∈ Tx).

The set of all fixed points of f and T are denoted respectively by F( f ) and F(T).

3. Main Results

Theorem 3.1. Let (X, d) be a complete metric space and T : X −→ C(X) a multivalued
mapping. Let ψ : [0, ∞) → [0, ∞) be a nondecreasing and continuous function with∑∞

n=1 ψ
n(t) < ∞ and ψ(t) < t for each t > 0. Suppose that there exists a real number L ≥ 0

such that, for all x, y ∈ X,

(3.1) H(Tx, Ty) ≤ ψ(max {d(x, y), D(x, Tx), D(y, Ty),
D(y, Tx) +D(x, Ty)

2
,

D(y, Ty) [1 +D(x, Tx)]
1 + d(x, y)

,
D(y, Tx) [1 +D(x, Ty)]

1 + d(x, y)
})

+ L min {D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)}.
Then T has a fixed point in X.

Proof. Let x0 ∈ X and x1 ∈ Tx0. Then, by Lemma ??, there exists an x2 ∈ Tx1 such
that

d(x1, x2) ≤ H(Tx0, Tx1).

Applying (3.1) and using the monotone property of ψ, we have
d(x1, x2) ≤ H(Tx0, Tx1)

≤ ψ(max {d(x0, x1), D(x0, Tx0), D(x1, Tx1),
D(x1, Tx0) +D(x0, Tx1)

2
,
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D(x1, Tx1) [1 +D(x0, Tx0)]
1 + d(x0, x1)

,
D(x1, Tx0) [1 +D(x0, Tx1)]

1 + d(x0, x1)
})

+ L min {D(x0, Tx0), D(x1, Tx1), D(x0, Tx1), D(x1, Tx0)}
≤ ψ(max {d(x0, x1), d(x0, x1), d(x1, x2),

d(x1, x1) + d(x0, x2)
2

,

d(x1, x2) [1 + d(x0, x1)]
1 + d(x0, x1)

,
d(x1, x1) [1 + d(x0, x2)]

1 + d(x0, x1)
})

+ L min {d(x0, x1), d(x1, x2), d(x0, x2), d(x1, x1)}
= ψ(max {d(x0, x1), d(x1, x2),

d(x0, x2)
2

}).
Since

d(x0, x2)
2

≤ d(x0, x1) + d(x1, x2)
2

≤ max {d(x0, x1), d(x1, x2)}, it follows that

(3.2) d(x1, x2) ≤ ψ(max {d(x0, x1), d(x1, x2)}).
Suppose that d(x0, x1) < d(x1, x2). Then d(x1, x2) � 0, and it follows from (3.2) and
a property of ψ that

d(x1, x2) ≤ ψ(d(x1, x2)) < d(x1, x2),

which is a contradiction. Hence d(x1, x2) ≤ d(x0, x1). Then from (3.2), we have

(3.3) d(x1, x2) ≤ ψ(d(x0, x1)).

Since x2 ∈ Tx1, by Lemma ??, there exists an x3 ∈ Tx2 such that

d(x2, x3) ≤ H(Tx1, Tx2).

Applying (3.1) and using the monotone property of ψ, we have
d(x2, x3) ≤ H(Tx1, Tx2)

≤ ψ(max {d(x1, x2), D(x1,Tx1), D(x2,Tx2),
D(x2, Tx1)+D(x1,Tx2)

2
,

D(x2, Tx2) [1 +D(x1, Tx1)]
1 + d(x1, x2)

,
D(x2, Tx1) [1 +D(x1, Tx2)]

1 + d(x1, x2)
})

+ L min {D(x1, Tx1), D(x2, Tx2), D(x1, Tx2), D(x2, Tx1)}
≤ ψ(max {d(x1, x2), d(x1, x2), d(x2, x3),

d(x2, x2) + d(x1, x3)
2

,

d(x2, x3) [1 + d(x1, x2)]
1 + d(x1, x2)

,
d(x2, x2) [1 + d(x1, x3)]

1 + d(x1, x2)
})

+ L min {d(x1, x2), d(x2, x3), d(x1, x3), d(x2, x2)}
= ψ(max {d(x1, x2), d(x2, x3),

d(x1, x3)
2

}).
Since

d(x1, x3)
2

≤ d(x1, x2) + d(x2, x3)
2

≤ max {d(x1, x2), d(x2, x3)},
it follows that

(3.4) d(x2, x3) ≤ ψ(max {d(x1, x2), d(x2, x3)}).
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Suppose that d(x1, x2) < d(x2, x3). Then d(x2, x3) � 0, and it follows from (3.3) and
a property of ψ that

d(x2, x3) ≤ ψ(d(x2, x3)) < d(x2, x3),

which is a contradiction. Hence d(x2, x3) ≤ d(x1, x2). From (3.3), we have

(3.5) d(x2, x3) ≤ ψ(d(x1, x2)).

Continuing this process we construct a sequence {xn} such that, for all n ≥ 0

(3.6) xn+1 ∈ Txn

and

(3.7) d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)).

By repeated application of (??) and the monotone property of ψ, we have

d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)) ≤ ψ2(d(xn−1, xn)) ≤ ... ≤ ψn+1(d(x0, x1)).

Then, by a property of ψ, we have
∑

n

d(xn, xn+1) ≤
∑

n

ψn(d(x0, x1)) < ∞.

This shows that {xn} is a Cauchy sequence. From the completeness of X, there exists
a z ∈ X such that

(3.8) xn −→ z as n −→ ∞.
Since xn+1 ∈ Txn, for all n ≥ 1, applying (3.1) and using the monotone property of
ψ, we get
D(xn+1, Tz) ≤ H(Txn, Tz)

≤ ψ(max {d(xn, z), D(xn, Txn), D(z, Tz),
D(z, Txn) +D(xn, Tz)

2
,

D(z, Tz) [1 +D(xn, Txn)]
1 + d(xn, z)

,
D(z, Txn) [1 +D(xn, Tz)]

1 + d(xn, z)
})

+ L min {D(xn, Txn), D(z, Tz), D(xn, Tz), D(z, Txn)}
≤ ψ(max {d(xn, z), d(xn, xn+1), D(z, Tz),

d(z, xn+1) +D(xn, Tz)
2

,

D(z, Tz) [1 + d(xn, xn+1)]
1 + d(xn, z)

,
d(z, xn+1) [1 +D(xn, Tz)]

1 + d(xn, z)
})

+ L min {d(xn, xn+1), D(z, Tz), D(xn, Tz), d(z, xn+1)}.
Taking the limit as n −→ ∞ in the above inequality, using (??), and the continuity
of ψ, we have

D(z, Tz) ≤ ψ(max {0, 0, D(z, Tz),
D(z, Tz)

2
, D(z, Tz), 0}) ≤ ψ(D(z, Tz)).
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Suppose that D(z, Tz) � 0. Then, from the above inequality, it follows by a property
of ψ that

D(z, Tz) ≤ ψ(D(z, Tz)) < D(z, Tz),

which is a contradiction. Hence D(z, Tz) = 0. Since Tz ∈ C(X), Tz is compact
and hence Tz is closed; that is, Tz = Tz, where Tz denotes the closure of Tz. Now
D(z, Tz) = 0 implies that z ∈ Tz = Tz; that is, z is a fixed point of T.

Example 3.1. Let X = [a, b], where a, b ∈ Rwith 1 < a < b and “d” is usual metric on X. Let
T : X −→ C(X) be defined as follows:

Tx = [x +
1
x
− 1

b
, b], for x ∈ X.

Let ψ : [0, ∞) −→ [0, ∞) be defined by:

ψ(t) = k t, where t ∈ [0, ∞) and 1 − 1
b2 ≤ k < 1.

Let L ≥ 0 any real number.
Then all of the conditions of Theorem 3.1 are satisfied and it is seen that “b” is a fixed

point of T in X.

Using ψ(t) = k t, where 0 < k < 1, in Theorem 3.1, we have the following
corollary.

Corollary 3.1. Let (X, d) be a complete metric space and T : X −→ C(X) a multivalued
mapping. Suppose that there exist two real numbers L ≥ 0 and 0 < k < 1 such that, for all
x, y ∈ X,

(3.9) H(Tx, Ty) ≤ k max {d(x, y), D(x, Tx), D(y, Ty),
D(y, Tx) +D(x, Ty)

2
,

D(y, Ty) [1 +D(x, Tx)]
1 + d(x, y)

,
D(y, Tx) [1 +D(x, Ty)]

1 + d(x, y)
}

+ L min {D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)}.
Then T has a fixed point in X.

With L = 0 and ψ(t) = k t, where 0 < k < 1, in Theorem 3.1, we have the
following corollary.

Corollary 3.2. Let (X, d) be a complete metric space and T : X −→ C(X) a multivalued
mapping. Suppose that there exists a real number 0 < k < 1 such that, for all x, y ∈ X,

(3.10) H(Tx, Ty) ≤ k max {d(x, y), D(x, Tx), D(y, Ty),
D(y, Tx) +D(x, Ty)

2
,

D(y, Ty) [1 +D(x, Tx)]
1 + d(x, y)

,
D(y, Tx) [1 +D(x, Ty)]

1 + d(x, y)
}.

Then T has a fixed point in X.
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4. Stability of fixed point sets

Theorem 4.1. Let (X, d) be a complete metric space and Ti : X −→ C(X), i = 1, 2 be
two multivalued mappings. Let ψ : [0, ∞)→ [0, ∞) be a nondecreasing and continuous
function with Φ(t) =

∑∞
n=1 ψ

n(t) < ∞, Φ(t) → 0 as t → 0 and ψ(t) < t for each t > 0.
Suppose that there exists a real number L ≥ 0 such that the Ti satisfy (3.1) for every i = 1, 2;
that is, for all x, y ∈ X,

H(Tix, Tiy) ≤ ψ(max {d(x, y), D(x, Tix), D(y, Tiy),
D(y, Tix)+D(x, Tiy)

2
,

D(y, Tiy) [1 +D(x, Tix)]
1 + d(x, y)

,
D(y, Tix) [1 +D(x, Tiy)]

1 + d(x, y)
})

+ L min {D(x, Tix), D(y, Tiy), D(x, Tiy), D(y, Tix)}.
Then H(F(T1), F(T2)) ≤ Φ(k) where k = supx∈X H(T1x, T2x).

Proof. From Theorem 3.1 the set of fixed points of Ti (i = 1, 2) is non-empty; that
is, F(Ti) � Ø, for i = 1, 2. Let y0 ∈ F(T1); that is y0 ∈ T1y0. Then, by Lemma 2.2,
there exists a y1 ∈ T2y0 such that

(4.1) d(y0, y1) ≤ H(T1y0, T2y0).

Since y1 ∈ T2y0, by Lemma ??, there exists a y2 ∈ T2y1 such that

d(y1, y2) ≤ H(T2y0, T2y1).

Then, arguing as in the proof of Theorem 3.1, we construct a sequence {yn} such
that, for all n ≥ 0

(4.2) yn+1 ∈ T2yn,

(4.3) d(yn+1, yn+2) ≤ ψ(d(yn, yn+1)),

and

(4.4) d(yn+1, yn+2) ≤ ψ(d(yn, yn+1)) ≤ ψ2(d(yn−1, yn)) ≤ ... ≤ ψn+1(d(y0, y1)).

Similar to the proof of Theorem 3.1, we prove that {yn} is a Cauchy sequence X and
there exists a u ∈ X such that

(4.5) yn −→ u as n −→ ∞.
Also, u is a fixed point of T2; that is, u ∈ T2u.

From (??) and the definition of k, it follows that

(4.6) d(y0, y1) ≤ H(T1y0, T2y0) ≤ k = sup
x∈X

H(T1x, T2x).
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Again, by the triangle inequality and using (??), we have

d(y0, u) ≤
n∑

i=0

d(yi, yi+1) + d(yn+1, u) ≤
n∑

i=0

ψi(d(y0, y1)) + d(yn+1, u).

Taking the limit as n −→ ∞ in the above inequality, using (??), (??) and the properties
of ψ, we have

d(y0, u) ≤
∞∑

i=0

ψi(d(y0, y1)) ≤
∞∑

i=0

ψi(k) = Φ(k).

Thus, given an arbitrary y0 ∈ F(T1), we can find a u ∈ F(T2) for which

d(y0, u) ≤ Φ(k).

Similarly, we can prove that, for arbitrary z0 ∈ F(T2), there exists a w ∈ F(T1) such
that d(z0, w) ≤ Φ(k). Hence we conclude that

H(F(T1), F(T2)) ≤ Φ(k).

Lemma 4.1. Let (X, d) be a complete metric space. Let {Tn : X −→ C(X) : n ∈ N}
be a sequence of multivalued mappings, uniformly convergent to a multivalued mapping
T : X −→ C(X). If Tn satisfies (3.1) for every n ∈ N, then T also satisfies (3.1), where the
function ψ : [0, ∞)→ [0, ∞) is continuous and L ≥ 0 a real number.

Proof. As Tn satisfies (3.1) for every n ∈N, we have

H(Tnx, Tny) ≤ ψ(max {d(x, y), D(x, Tnx), D(y, Tny),
D(y, Tnx) +D(x, Tny)

2
,

D(y, Tny) [1 +D(x, Tnx)]
1 + d(x, y)

,
D(y, Tnx) [1 +D(x, Tny)]

1 + d(x, y)
})

+ L min {D(x, Tnx), D(y, Tny), D(x, Tny), D(y, Tnx)}.
Since the sequence {Tn} is uniformly convergent to T and ψ is continuous, taking
the limit n→∞ in the above inequality, we get

H(Tx, Ty) ≤ ψ(max {d(x, y), D(x, Tx), D(y, Ty),
D(y, Tx) +D(x, Ty)

2
,

D(y, Ty) [1 +D(x, Tx)]
1 + d(x, y)

,
D(y, Tx) [1 +D(x, Ty)]

1 + d(x, y)
})

+ L min {D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)},
which shows that T satisfies (3.1).

We now present our stability result.
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Theorem 4.2. Let (X, d) be a complete metric space. Let {Tn : X −→ C(X) : n ∈ N}
be a sequence of multivalued mappings, uniformly convergent to a multivalued mapping
T : X −→ C(X). Suppose that Tn satisfies (3.1) for every n ∈ N, where the conditions
upon ψ and L are the same as in Theorem 4.1. Then

lim
n→∞H(F(Tn), F(T)) = 0;

that is, the fixed point sets of Tn are stable.

Proof. By lemma 4.1, T satisfies (3.1). Let kn = supx∈X H(Tnx, Tx). Since the
sequence {Tn} is uniformly convergent to T on X,

(4.7) lim
n→∞ kn = lim

n→∞ sup
x∈X

H(Tnx, Tx) = 0.

Using Theorem 4.1 we get

H(F(Tn), F(T)) ≤ Φ(kn), for every n ∈N.
Since ψ is continuous and Φ(t)→ 0 as t→ 0, using (??), we have

lim
n→∞H(F(Tn), F(T)) ≤ lim

n→∞Φ(kn) = 0;

that is,
lim
n→∞H(F(Tn), F(T)) = 0.

Hence the proof is complete.
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