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CONSTANT RATIO CURVES ACCORDING TO BISHOP FRAME IN
MINKOWSKI 3-SPACE E3

1

İlim Kişi and Günay Öztürk

Abstract. In the present paper, we consider a curve in Minkowski 3-space E3
1 as a curve

whose position vector can be written as linear combination of its Bishop frame vectors.
In particular, we study the non-null curves in E3

1 and characterize such curves in terms
of their Bishop curvatures. Further, we obtain some results of TE3

1.
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1. Introduction

A curve x : I ⊂ R → E3 in Euclidean 3curvatures κ(s) and τ(s). From the
elementary differential geometry it is well known that a curve x(s) in E3 lies on
a sphere if its position vector (denoted also by x) lies on its normal plane at each
point. If the position vector x lies on its rectifying plane then x(s) is called rectifying
curve [6]. Rectifying curves characterized by the simple equation

x(s) = λ(s)T(s) + μ(s)N2(s),

where λ(s) and μ(s) are smooth functions and T(s) and N2(s) are tangent and
binormal vector fields of x respectively [6]. In the same paper B. Y. Chen gave a
simple characterization of rectifying curves. In particular, it is shown in [10], that
there exists a simple relation between rectifying curves and centrodes, which play
an important role in mechanics kinematics as well as in differential geometry in
defining the curves of constant procession. It is also provided that a twisted curve
is congruent to a non constant linear function of s [7]. Further, in the Minkowski
3-space E3

1, the rectifying curves are investigated in ([12],[15],[16],[17]). In [17] a
characterization of the space-like, the time-like and the null rectifying curves in the
Minkowski 3-space in terms of centrodes is given. For a study on rectifying curves
in the dual Lorentzian space D3

1 see [22]. For the characterization of rectifying
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curves in three dimensional compact Lie groups or in dual spaces see [24] or [1],
respectively.

For any curve x(s) in En
t with index t, the position vector x can be decompose

into its tangential and normal components at each point:

(1.1) x = xT + xN.

A non-null curve x(s) in En
t is said to be of constant ratio if the ratio

∥∥∥xT∥∥∥ :
∥∥∥xN∥∥∥ is

constant on x(I) where
∥∥∥xT∥∥∥ and

∥∥∥xN∥∥∥ denote the length of xT and xN, respectively
[5].

Moreover, a curve in En
t is called T-constant (resp. N-constant) if the tangential

component xT (resp. the normal component xN) of its position vector x is of constant
length [5]. Recently in [13] the authors give the necessary and sufficient conditions
for twisted curves in Euclidean 3-spaceE3 to become T-constant orN-constant. See
also [14] for the results of T-constant orN-constant curves in Euclidean 4-spaceE4.

The Frenet frame of a three times continuously differentiable non-degenerate
space-like (time-like) curve invariant under semi-Euclidean space has long been
the standard vehicle for analysing properties of the space-like (time-like) curve
invariant under semi-Euclidean motions. For arbitrary moving frames that is,
orthonormal basis fields, we can express the derivatives of the frame with respect
to the space-like (time-like) curve parameter in terms of the frame its self, and
due to semi-orthonormality the coefficient matrix is always semi-skew symmetric.
Thus it generally has three nonzero entries. The Frenet frame gains part of its
special significance from the fact that one of the three derivatives is zero. Another
feature of the Frenet frame is that it is adapted to the space-like (time-like) curve:
the members are either tangent to or perpendicular to the space-like (time-like)
curve. In [2, 18], the authors gave new frames (Bishop frames) of a non-null curve
in the Minkowski 3-space E3

1. Recently, many works related to Bishop frame have
been done by several authors. In [20], authors studied space-like biharmonic slant
helices according to the Bishop frame in the Lorentzian group of rigid motions. In
[19, 23], the authors gave some characterizations of space-like and time-like curves
according to Bishop frame in Minkowski 3-space.

In the present study, we consider a non-null curve in E3
1 according to Bishop

frame whose position vector satisfies the parametric equation

(1.2) x(s) = m0(s)T(s) +m1(s)M1(s) +m2(s)M2(s),

for some differentiable functions, mi(s), 0 ≤ i ≤ 2. We characterize the twisted
non-null curves in terms of their curvature functions mi(s) and give the necessary
and sufficient conditions for non-null curves to become T-constant or N-constant.
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2. Basic Concepts

Let En
t denote the pseudo-Euclidean n-space with index t. Then the pseudo-

Euclidean metric on En
t is given by

� = −
t∑

i=1

dx2i +
n∑

j=t+1

dx2j ,

where (x1, ..., xn) is a rectangular coordinate system of En
t . In particular En

1 is
known as the Lorentzian-Minkowski space-time.

For given positive number r, we put

S
n−1
t (r2) =

{
x ∈ En

t : �(x, x) = r2
}
,

and
H

n−1
t−1 (−r2) =

{
x ∈ En

t : �(x, x) = −r2
}
.

It is known that Sn−1t (r2) and Hn−1
t−1 (−r2) are called pseudo-Riemannian and

Pseudo-hyperbolic spaces respectively. In particular, Sn−11 (r2) is called a de Sit-
ter space-time and Hn−1

1 (−r2) is an anti-de Sitter space-time [11]. The hyperbolic
spaceHn−1(−r2) is defined by

H
n−1(−r2) =

{
x ∈ En

t : �(x, x) = −r2 and x1 > 0
}
.

Recall that an arbitrary vector v ∈ En
t is called space-like if �(v, v) > 0 or v = 0,

time-like �(v, v) < 0, andnull (light-like) if �(v, v) = 0 and v � 0.The normof a vector

v is given by ‖v‖ =
√∣∣∣�(v, v)∣∣∣ and two vectors v and w are said to be orthonormal, if

�(v,w) = 0.Further, an arbitrary curve x(s) ofEn
t is called space-like, time-like or null

it its velocity vector x
′
(s) is space-like, time-like or null, respectively [21]. A space-

like or time-like curve (i.e., non-null curve) has unit speed, if �(x
′
(s), x

′
(s)) = ±1.

The light cone LC of En
t defined to be

LC = {
x ∈ En

t , �(x, x) = 0
}
.

Denoted the moving Frenet frame along a space curve x (s) by {T,N1,N2}where
T,N1 andN2 are tangent, principal normal and binormal vector of x (s), respectively.
For a curve in the Minkowski 3-space E3

1, the following Frenet formulae are given:
Case 1: If x (s) is a space-like curve, then

T′ = κN1

N′1 = −εκT + τN2

N′2 = τN1,
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where 〈T,T〉 = 1, 〈N1,N1〉 = ε, 〈N2,N2〉 = −ε, (ε = ±1) [25].
Case 2: If x (s) is a timelike curve, then

T′ = κN1

N′1 = κT + τN2

N′2 = −τN1,

where 〈T,T〉 = −1, 〈N1,N1〉 = 〈N2,N2〉 = 1 [25].
Denote by {T,M1,M2} the moving Bishop frame along the curve x (s) : I ⊂ R→

E3
1 in the Minkowski 3-Space E3

1.

For an unit speed space-like curve x (s) in the space E3
1, the following Bishop

formulas are given,

(2.1)

⎡⎢⎢⎢⎢⎢⎢⎣
T′
M′1
M′2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

0 k1 −k2
−εk1 0 0
−εk2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

T
M1

M2

⎤⎥⎥⎥⎥⎥⎥⎦
The relations between κ, τ, θ and k1, k2 are given as follows:

κ(s) =
√∣∣∣k21 − k22

∣∣∣
θ(s) = arg tanh

(
k2
k1

)
, k1 � 0.

So that k1 and k2 effectively correspond to Cartesian coordinate system for the polar
coordinates κ, θ with θ =

∫
τ(s)ds. The orientation of the parallel transport frame

includes the arbitrary choice of integration constant θ0, which disappears from τ
due to the differentiation [2, 4].

For a unit timelike curve x (s) in the space E3
1, the following Bishop formulas

are given,

(2.2)

⎡⎢⎢⎢⎢⎢⎢⎣
T′
M′1
M′2

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

0 k1 k2
k1 0 0
k2 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

T
M1

M2

⎤⎥⎥⎥⎥⎥⎥⎦
where 〈T,T〉 = −1, 〈M1,M1〉 = 1, 〈M2,M2〉 = 1.

One can show that

κ(s) =
√
k21 + k22

θ(s) = arctan
(
k2
k1

)
, k1 � 0

τ(s) =
dθ(s)
ds

[18].
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3. Curves of Constant Ratio According to Bishop Frame

In the present section, we characterize the non-null curves given with the arc
length function s in E3

1 in terms of their curvatures. Let x : I ⊂ R → E3
1 be a

unit speed regular curve with curvatures k1(s) and k2(s). The position vector of the
curve (also defined by x) satisfies the vectorial equation (1.2), for some differential
functions mi(s), 0 ≤ i ≤ 2. Let the curve x is space-like. Differentiating (1.2) with
respect to the arc length parameter s and using the Bishop frame equations (2.1),
we obtain

x′(s) = (m′0(s) − εk1(s)m1(s) − εk2(s)m2(s))T(s)(3.1)
+(m′1(s) + k1(s)m0(s))M1(s)
+(m′2(s) − k2(s)m0(s))M2(s).

It follows that

m′0 − εk1m1 − εk2m2 = 1,(3.2)
m′1 + k1m0 = 0,
m′2 − k2m0 = 0.

When the curve x is time-like, differentiating (1.2) with respect to the arc length
parameter s and using the Bishop frame equations (2.2), we obtain

x′(s) = (m′0(s) + k1(s)m1(s) + k2(s)m2(s))T(s)(3.3)
+(m′1(s) + k1(s)m0(s))M1(s)
+(m′2(s) + k2(s)m0(s))M2(s).

It follows that

m′0 + k1m1 + k2m2 = 1,(3.4)
m′1 + k1m0 = 0,
m′2 + k2m0 = 0.

Definition 3.1. Let x : I ⊂ R → En
t be a non-null unit speed curve in pseudo-

Riemannian space En
t . Then the position vector x can be decompose into its tan-

gential and normal components at each point as in (1.1). If the ratio
∥∥∥xT∥∥∥ :

∥∥∥xN∥∥∥ is
constant on x(I) then x is said to be of constant-ratio [5].
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For a unit speed non-null curve x in En
t , the gradient of the distance function

ρ = ‖x(s)‖ is given by

(3.5) �radρ =
dρ
ds

x′(s) =
< x(s), x′(s) >
‖x(s)‖ x′(s),

where T is the tangent vector field of x.

Lemma 3.1. [9] Let x : I ⊂ R → En
t be a unit speed non-null curve in En

t with index t.
Then

∥∥∥�radρ∥∥∥ = c holds for a constant c if and only if, up to translation of the arc length
function s, we have ‖x(s)‖ = cs.

Theorem 3.1. [8] Let x : I ⊂ R→ En
t be a unit speed space-like curve in En

t with index
t. Then

∥∥∥�radρ∥∥∥ = c holds for a constant c if and only if one of the following eight cases
occurs:

i) x lies in the light-like cone LC.
ii) x lies in a pseudo-Riemannian sphere Sn−1t (r2).
iii) x lies in a pseudo-hyperbolic spaceHn−1

t−1 (−r2).
iv) x lies on open portion of a space-like line through the origin.
v) There exist a real number b > 1 and time-like unit speed curve y = y(u)which lies in

the unit pseudo-Riemannian sphere Sn−1t (1) such that x is given by x(s) = bsy
( √

b2−1
b ln s

)
.

vi) There exist a real number b ∈ (0, 1) and space-like unit speed curve y = y(u)
which lies in the unit pseudo-Riemannian sphere Sn−1t (1) such that x is given by x(s) =

bsy
( √

1−b2
b ln s

)
.

vii) There exist a null curve y = y(s) lying in the unit pseudo-Riemannian Sn−1t (1) such
that x is given by x(s) = bsy(s).

viii) There exist a real number b > 0 and space-like unit speed curve y = w(u)
which lies in the unit pseudo-hyperbolic space Hn−1

t−1 (1) such that x lies given by x(s) =

bsw
( √

1−b2
b ln s

)
.

The following result characterizes constant-ratio curves according to its Bishop
frame in E3

1.

Proposition 3.1. Let x : I ⊂ R→ E3
1 be a unit speed non-null curve and be of constant-

ratio in E3
1, then the position vector of the curve has one of the following parametrizations;

i) If x is space-like, then

x(s) = c2sT(s)

+
εc2k2

(
k21 − k22

)
s − k′2

(
c2 − 1

)
ε
(
k′1k2 − k1k′2

) M1(s)

+
εc2k1

(
k21 − k22

)
s − k′1

(
c2 − 1

)
ε
(
−k′1k2 + k1k′2

) M2(s).
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ii) If x is time-like, then

x(s) = −c2sT(s)

+
c2k2

(
k21 + k22

)
s + k′2

(
c2 + 1

)
−k′1k2 + k1k′2

M1(s)

+
c2k1

(
k21 + k22

)
s + k′1

(
c2 + 1

)
k′1k2 − k1k′2

M2(s),

where c is the real constant.

Proof. Let x be a non-null curve of constant-ratio given with the arc length function
s. Then, from the previous result the distance function ρ of x satisfies the equality
ρ = ‖x(s)‖ = cs for some real constant c. Further, using (3.5) we get

(3.6)
∥∥∥�radρ∥∥∥ = < x(s), x′(s) >

‖x(s)‖ = c.

Since, x is a non-null curve ofE3
1, then it satisfies the equality (3.1). If x is space-like,

we get

(3.7)

m0(s) = c2s

m1(s) =
εc2k2(k21−k22)s−k′2(c2−1)

ε(k′1k2−k1k′2)
,

m2(s) =
εc2k1(k21−k22)s−k′1(c2−1)

ε(−k′1k2+k1k′2)
,

by the use of (3.6) and (3.2) with Lemma 3.2. If x is time-like, we get

(3.8)

m0(s) = −c2s
m1(s) =

c2k2(k21+k22)s+k′2(c2+1)
−k′1k2+k1k′2 ,

m2(s) =
c2k1(k21+k22)s+k′1(c2+1)

k′1k2−k1k′2 ,

by the use of (3.6) and (3.4) with Lemma 3.2. Substituting these values into (3.1),
we obtain the desired results.

3.1. T-constant Curves According to Bishop Frame in E3
1

Definition 3.2. Let x : I ⊂ R → En
t be a unit speed non-null curve in En

t . If
∥∥∥xT∥∥∥

is constant then x is called a T-constant curve [9]. Further, a T-constant curve x is
called first kind if

∥∥∥xT∥∥∥ = 0, otherwise second kind.

As a consequence of (3.1) with (3.2) and (3.4), we get the following result.
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Lemma 3.2. Let x : I ⊂ R→ E3
1 be a unit speed non-null curve in E3

1.
i) x is a T-constant space-like curve if and only if

0 = 1 + εk1m1 + εk2m2(3.9)
0 = m′1 + k1m0

0 = m′2 − k2m0,

ii) x is a T-constant time-like curve if and only if

0 = 1 − k1m1 − k2m2(3.10)
0 = m′1 + k1m0

0 = m′2 + k2m0,

hold, where m0 ∈ R,m1(s) and m2(s) are differentiable functions.

As a consequence of (3.9) and (3.10), we get the following result.

Theorem 3.2. Let x : I ⊂ R → E3
1 be a unit speed non-null curve in E3

1 with the
curvatures k1 and k2. Then,

i) x is a T-constant space-like curve of first kind, if and only if

−εk1 (s + a) − εk2 (s + b) = 1.

ii) x is a T-constant time-like curve of first kind, if and only if

k1 (s + a) + k2 (s + b) = 1,

where a, b are real constants.

Proof. Let x be a T-constant space-like (time-like) curve of first kind. Then, from
the second and third equalities in (3.9) and (3.10), we get m′1 = m′2 = 0. Then
substituting the solution of the last equation into the first equation of (3.9) and
(3.10), we get the desired result.

Theorem 3.3. Let x : I ⊂ R→ E3
1 be a non-null unit speed curve in E3

1. Then,

i) x is a T-constant space-like curve of second kind if and only if
⎛⎜⎜⎜⎜⎝k
′
1m1 + k′2m2

k21 − k22

⎞⎟⎟⎟⎟⎠
′
= 0.

ii) x is a T-constant timelike curve of second kind if and only if
⎛⎜⎜⎜⎜⎝k
′
1m1 + k′2m2

k21 + k22

⎞⎟⎟⎟⎟⎠
′
= 0.
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Proof. Suppose that x is a T-constant space-like (time-like) curve of second kind.
Differentiating the first equations of (3.9) and (3.10) and substituting the second
and the third equations of (3.9) and (3.10) into the differential of the first equation,
we get the result.

Corollary 3.1. Let x : I ⊂ R → E3
1 be a non-null unit speed curve in E3

1. If x is a
T-constant non-null unit speed curve of second kind, then the curvatures functions k1, k2
according to Bishop frame cannot be constant functions.

Proof. If the curvatures k1, k2 according to Bishop frame are constant, thenm0 is zero,
which means that the curve is T-constant of first kind. Therefore, the curvatures
functions k1, k2 according to Bishop frame cannot be constant functions.

For T-constant curves of second kind, we give the following result.

Proposition 3.2. Let x ∈ E3
1 be a unit speed non-null T-constant curve of second kind.

Then the distance function ρ = ‖x‖ satisfies
(3.11) ρ = ±√c1s + c2,

where c1, c2 are real constants: and if the curve x is space-like, c1 = 2m0, if the curve x is
time-like c1 = −2m0.

Proof. Let x ∈ E3
1 be a T-constant curve of second kind then by definition the

function m0(s) of x is constant. Therefore, differentiating the squared distance
function ρ2 = 〈x(s), x(s)〉 and using (3.5), we get ρρ′ = m0, if the curve x is space-
like, and ρρ′ = −m0, if the curve x is time-like. It is an easy calculation to show
that, this differential equation has a nontrivial solution (3.11).

3.2. N-constant Curves According to Bishop Frame in E3
1

Definition 3.3. Let x : I ⊂ R → En
t be a unit speed non-null curve in En

t . If∥∥∥xN∥∥∥ is constant then x is called a N-constant curve. For a N-constant curve x,
either

∥∥∥xN∥∥∥ = 0 or
∥∥∥xN∥∥∥ = μ for some non-zero smooth function μ [9]. Further, a

N-constant curve x is called first kind if
∥∥∥xN∥∥∥ = 0, otherwise second kind.

Note that, for a N-constant space-like(time-like) curve x according to Bishop
frame in E3

1, then

(3.12)
∥∥∥xN(s)∥∥∥2 = ε (m2

1(s) −m2
2(s)

)
,

(3.13)
∥∥∥xN(s)∥∥∥2 = m2

1(s) +m2
2(s),

become constant functions, respectively.
For the N-constant curves of first kind we give the following result.
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Theorem 3.4. Let x : I ⊂ R → E3
1 be a unit speed non-null curve in E3

1. Then x is a
N-constant curve of first kind if and only if either x is a straight line or x is a planar curve
and m0 is a non-constant linear function of an arc length function s, i.e., m0(s) = c1s + c2
for some constants c1 and c2.

Proof. Suppose that x is N-constant curve of first kind in E3
1, then if x is a time-like

curve, m2
1 + m2

2 = 0, which means m1 = m2 = 0. Writing the last equation in (3.4),
we get m0 = s + c, for some constant c ∈ R and k1, k2 is zero.This means that x is
a straight line. Further, if x is a space-like curve, ε

(
m2

1(s) −m2
2(s)

)
= 0. In this case,

either m1 = m2 = 0 or m1 = ±m2 � 0. In particular, if m1 = m2 = 0, then from (3.2),
x is a straight line. If m1 = ±m2 � 0, then from (3.2), k1 = ±k2, which means x is
a planar curve. Moreover, writing m1 = ±m2 � 0 and k1 = ±k2 in (3.2), we obtain
m0(s) = c1s + c2 for some constants c1 and c2.

Proposition 3.3. Let x(s) ∈ E3
1 be a non-null curve inE

3
1 and s be its arc-length function.

Then x is a N-constant curve of second kind if and only if either x lies in normal plane or
m0 = s + c for some constant c ∈ R.

Proof. Let xbe aN-constant curve of second kind then the equationm1m′1−m2m′2 = 0
holds. Hence, by the use of the equations in (3.2) and (3.4), we get

(3.14) m0

(
m′0 − 1

)
= 0.

Therefore, there are two possible cases: m0 = 0, or m′0 − 1 = 0. If m0 = 0, x lies in
normal plane. Otherwise, m0 = s + c for some constant c ∈ R.
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2. B. Bükçü and M.K. Karacan: Bishop frame of the spacelike curve with a spacelike
principal normal in Minkowski 3-space. Comm. de la Facul. des Sci. de l’Université
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13. S. Gürpınar, K. Arslan and G. Öztürk: A Characterization of constant-ratio curves in
Euclidean 3-space E3. arXiv:1410.5577 (2014).
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