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COMMON FIXED POINT THEOREMS FOR MULTI-VALUED
CONTRACTIONS SATISFYING GENERALIZED CONDITION(B) ON

PARTIAL METRIC SPACES

Said Beloul

Abstract. In this paper we prove two common fixed point theorems for two pairs of single
and set valued mappings which satisfy the generalized contractive condition in complete
partial metric spaces. Our results generalize and improve some previous results.

keywords: generalized condition (B), partial Hausdorff metric, weakly com-
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1. Introduction and Preliminaries

After the famous Banach contraction principle some generalizations and extensions
were introduced with different conditions. Nadler [31] developed this principle
to the setting of multi valued mappings and he gave some results for this type.
Later many authors improved and generalized some fixed point results in various
spaces as generalized metric spaces, fuzzy metric spaces and cone metric spaces.
Matthews [30] introduced the concept of partial metric space, which is a general-
ization of the usual metric spaces in which the distance from an object to itself is
not necessarily a zero. More recently Aydi et al.[9] introduced the notion of partial
Hausdorffmetric and generalized the fixed point theorem of Nadler[31] on partial
metric spaces.
We recall some basic definitions and properties of the partial metric spaces. Those
were given in[30]:

Definition 1.1. [30] Let X be a nonempty set. A function p : X×X→ [0,∞) is said
to be a partial metric on X if and only if it satisfies the following conditions

1. p(x, x) = p(y, x) = p(x, y) if and only if x = y

2. p(x, x) ≤ p(x, y)
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3. p(x, y) = p(y, x)

4. p(x, z) ≤ p(x, y)+ p(y, z)− p(y, y),

The space (X, p) is called a partial metric space.

Clearly, if p(x, y) = 0 then the first two of the above conditions imply that x = y.
Each partial metric p on X generates a T0 topology τp on X which has as a base
the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <
p(x, x)+ ε}, for all x ∈ X and ε > 0.
If p is a partial metric on X, then the two functions ps, dm

p : X ×X→ [0,∞) given by

ps(x, y) = 2p(x, y)− p(x, x)− p(y, y),

dm
p (x, y) = max{p((x, y)− p(x, x), p(x, y)− p(y, y)} = p(x, y)−min{p(x, x), p(y, y)}

define two equivalent metrics on X.
Furthermore, a sequence {xn} converges in (X, ps) to a point x ∈ X if and only if

lim
n→∞ p(xn, xn) = lim

n→∞ p(xn, x) = p(x, x).

Definition 1.2. [30] Let (X, p) be a partial metric space

• A sequence xn in a partial metric space (X, p) converges to a point x ∈ X,with
respect to τp if and only if

p(x, x) = lim
n→∞ p(x, xn).

• A sequence {xn} in X is said to be a Cauchy sequence, if lim
n→∞ p(xn, xm exists

and is finite.

• (X, p) is said to be complete if every Cauchy sequence {xn} in X converges
with respect to τp to a point x ∈ X such that lim

n→∞ p(x, xn) = p(x, x).

Lemma 1.1. [30] Let (X, p) be a partial metric space.

• {xn} in (X, p) is said to be a Cauchy sequence in (X, p), if and only if it is as well in
(X, ps).

• (X, p) is a complete space if and only if (X, ps) is a complete space.

Lemma 1.2. [3] Let (X, p) be a partial metric space, if a sequence {xn} converges to z in
(X, p) such p(z, z) = 0, then for every y ∈ X we have

lim
n→∞ p(xn, y) = p(z, y)

Aydi et al. [9] defined the partial Hausdorffmetric as follows
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Definition 1.3. [9] Let (X, p) be a partial metric space and let CBp(X) be a set of
all nonempty, bounded and closed subsets of X, the partial Hausdorff metric is a
function Hp : CBp(X) × CBp(X)→ [0,∞) such that for all A,B ∈ CBp(X)

Hp(A,B) = max{δp(A,B), δp(B,A)},
where p(x,A) = inf{p(x, a), a ∈ A}, δp(A,B) = sup{p(a,B), a ∈ A}and

δp(B,A) = {p(b,A), b ∈ B}.
It is clear from the definition of the two functions δp and Hp that for A,B ∈ CBp(X)
and a ∈ A we have:

p(a,B) = inf
b∈B

p(a, b) ≤ δp(A,B) ≤ Hp(A,B).

Lemma 1.3. [6] Let (X, p) be a partial metric space and A is a nonempty subset of X then
a ∈ A if and only if p(a,A) = p(a, a), where A is the closure of A with respect to the topology
τp of (X, p).

Proposition 1.1. [9]

1. δp(A,A) = sup{p(a, a), a ∈ A}
2. δp(A,A) ≤ δp(A,B)

3. δp(A,B) = 0 implies A ⊆ B

4. δp(A,B) ≤ δp(A,C) + δp(V,B) − infc∈C p(c, c)

Proposition 1.2. [9]

1. Hp(A,A) ≤ Hp(A,B)

2. Hp(A,B) = Hp(B,A)

3. Hp(A,B) ≤ Hp(A,C) +Hp(C,B) − inf
c∈C p(C,C)

Corollary 1.1. [9]
Let (X, p) be a partial metric space for A,B in CBp(X) if Hp(A,B) = 0 then A = B

The converse of the last corollary may be not true.

Example 1.1. Let X = [0,∞) be endowed with the partial metric p(x, y) = max{x, y}, for all
a, b ∈ [0,∞) such that a < b we have

Hp([a, b], [a, b]) = b � 0
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Babu et al.[13] defined that a selfmapping � of metric space (X, d) is said to be satisfy
the condition (B) if there exists δ,≥ 0, L ≥ 0 such that δ + L < 1 and for all x, y ∈ X
we have:

d(�x, �y) ≤ δd(x, y) + L min(d(x, �x), d(y, �y), d(x, �y), d(y, �x)).

Abbas et.al[1] gave a generalization for the last definition to two selfmappings as
generalized condition (B):

Definition 1.4. [1] Let (X, d) metric space and let two selfmappings f , � : X → X,
the map � satisfies generalized condition (B) associated with f , if there exists
δ ∈ (0, 1) and L ≥ 0, such that

d(�x, �y) ≤ δM(x, y) + L min{d( f x, �x), d( f y, �y), d( f x, �y), d( f y, �x)},

where M(x, y) = max{d( f x, f y), d( f x, �x), d( f y, �y), d( f x,�y)+d( f y,�x)
2 }

We find the same above definition in paper[2] as: �generalized almost f -contraction.
Jungck and Rhoades [22] generalized the concept of compatibility and δ− compat-
ibility to the weak compatibility as follows:

Definition 1.5. [22] Let X be nonempty set, the mappings f : X → X, and S; X →
CB(X) are said to be weakly compatible, if they commute at their coincidence point,
i.e if f u ∈ Su for some u ∈ X, then f Su = S fu, where CB(X) is a set of closed and
bounded subsets of X.

In sequel of our work, we need the following lemma:

Lemma 1.4. [9] In partial metric space (X, p), let CBp(X) be a set of closed and bounded
subsets and let A,B ∈ CBp(X) and k > 1 for any a ∈ A there exists b(a) ∈ B such

p(a, b) ≤ kHp(A,B)

The aim of this paper is to prove two common fixed point theorems, for two
pairs of hybrid mappings satisfying generalized condition (B) in partial metric
spaces. Our results extend those in paper [23] to the setting of single- and set-
valued mappings. An example is given to illustrate this work.

2. Main results

Let f , � be single self-mappings of a complete partial metric space (X, p), and let
S,T : X→ CBp(X) be set-valued mappings, where CBp(X) is the set of all nonempty,
closed and bounded subset of X such that

T(X) ⊂ f (X) and S(X) ⊂ �(X),(2.1)
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There exist δ ∈ (0, 1) and L ≥ 0 such for all x, y ∈ X we have

Hp(Sx,Ty) ≤ δM(x, y) + L min(dp
m( f x, Sx), dp

m(�y,Ty), dp
m( f x,Ty), dp

m(�y, Sx)),(2.2)

where M(x, y) = max(p( f x, �y), p( f x, Sx), p(�y,Ty),
p( f x,Ty) + p(�y, Sx)

2
).

Let k > 1 such kδ < 1 and an arbitrary x0 ∈ X, since S(X) ⊂ �(X) there is a point
x1 ∈ X such that y1 = �x1 ∈ Sx0, for this point y1 and from lemma4 there exists a
point y2 ∈ Tx1 and since T(X) ⊆ f (X) there is x2 ∈ X such that y2 = f x2 ∈ Tx1 and:

p(y2, y1) = p( f x2, �x1) ≤ kHp(Sx0,Tx1)

For x2 we can choose x3 such y3 = �x3 ∈ Sx2 and

p(y2, y3) ≤ kHp(Sx2,Tx1),

so by continuing in this manner, we can construct two sequences {xn}, {yn} in X as
follows: {

y2n+1 = �x2n+1 ∈ Sx2n,
y2n+2 = f x2n+2 ∈ Tx2n+1,

(2.3)

and satisfy
p(y2n+2, y2n+1) ≤ kHp(Sx2n,Tx2n+1)

Lemma 2.1. The sequence {yn} which is defined by (2.3) is a Cauchy one.

Proof. Firstly, we will show

lim
n→∞ p(yn, yn+1) = 0,

M(x2n, x2n+1) = max{p( f x2n, �x2n+1), p( f x2n, Sx2n), p(�x2n+1,Tx2n+1),

1
2

(p( f x2n,Tx2n+1) + (p(�x2n+1, Sx2n))}

= max{p(y2n, y2n+1), p(y2n+1,Tx2n+1),
1
2

(p(y2n,Tx2n+1) + p(y2n+1, Sx2n))},

≤ max{p(y2n, y2n+1), p(y2n, y2n+1), p(y2n+1, y2n+2,
p(y2n, y2n+2 + p(y2n+1, y2n+1)

2
}

≤ max{p(y2n, y2n+1), p(y2n+1, y2n+2)}
min{dp

m( f x2n, Sx2n), dp
m(�x2n+1,Tx2n+1), d

p
m( f x2n,Tx2n+1), d

p
m(�x2n+1, Sx2n)} = 0

If p(y2n, y2n+1) ≤ p(y2n+1, y2n+2), by using (2.2) we get

p(y2n+1, y2n+2) ≤ kHp(Sx2n,Tx2n+1) ≤ kδp(y2n+1, y2n+2) < p(y2n+1, y2n+2)
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which is a contradiction, so we have

p(y2n+1, y2n+2) ≤ kHp(Sx2n,Tx2n+1) ≤ kδp(y2n, y2n+1),

putting λ = kδ < 1 and by induction we get

p(yn+1, yn+2) ≤ λp(yn, yn+1) ≤ λ2p(yn−1, yn) ≤ ... ≤ λn+1p(y0, y1).

For all n; m ∈N that’s m > n we have

ps(xn, xm) = 2p(xn, xm) − p(xn, xn) − p(xm, xm)

≤ 2
(
p(xn, xn+1) + p(xn+1, xn+2) + ... + p(xm−1, xm)

)

≤ 2λn
(
p(x0, x1) + λp(x0, x1) + ... + λm−1p(x0, x1)

)

≤ 2
λn

1 − λp(x0, x1)→ 0 as n→∞,
which implies that {yn} is a Cauchy sequence in (X, ps), and so it is as well in (X, p),
since (X, p) is complete, then (X, ps) is complete and {yn} converges to z ∈ X, also we
have

lim
n→∞ p(yn, z) = lim

n→∞ p(yn, ym) = p(z, z) = 0.

Theorem 2.1. Let (X, p) be a complete partial metric space, f , � : X → X two single-
valued and S,T : X → CBp(X) two set-valued mappings satisfying (2.1),(2.2) and f (X)
or �(X) is closed, if { f , S} is weakly compatible as well as {�,T}, then f , �, S and T have a
common fixed point.

Proof. From Lemma 2.1 the sequence {yn} is a Cauchy one and X complete so it
converges to z ∈ X, also the subsequence {y2n+2} = { f x2n+2} converges to z, since
f (X) is closed, then z ∈ f (X) and there exists u ∈ X such z = f u.
we claim z = f u ∈ Su, if not by using (2.2) we get

p(Su, y2n+2) = p(Su, �x2n+1) ≤ Hp(Su,Tx2n+1)

≤ δmax{p( f u, �x2n+1), p( f u, Su), p(�x2n+1,Tx2n+1),
1
2

(p( f u,Tx2n+1) + p(�x2n+1, Su))}
+L min{dp

m( f u, Su), dp
m(�x2n+1,Tx2n+1), d

p
m( f u,Tx2n+1), dp

m(�x2n+1, Su)},
since y2n+2 ∈ Tx2n+1 we get

p(�x2n+1,Tx2n+1) ≤ p(y2n+1, y2n+2)

and p( f u,Tx2n+1) ≤ p( f u, y2n+2), so the last inequality becomes

p(Su, y2n+1) ≤ δmax{p( f u, y2n+1), p( f u, Su), p(y2n+1, y2n+1),
1
2

(p( f u, y2n+1)+p(y2n+1, Su))}
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+L min{dp
m( f u, Su), dp

m(y2n+1, y2n+2), d
p
m( f u, y2n+2), dp

m(y2n+1, Su))},
letting n→∞, we get

p(Su, f u) ≤ δp( f u, Su) < p( f u, Su),

which is a contradiction, so p( f u, Su) = 0 and from Lemma 1.3 z = f u ∈ Su = Su,
then u is a coincidence point for f and S, the hybrid pair { f , S} is weakly compatible
and f u ∈ Su implies that f ( f u) = f z ∈ S fu = Sz.
Since S(X) ⊆ �(X) and z = f u ∈ Su there is v ∈ X such z = f u = �v, we will show
�v ∈ Tv, if not by using (2.2) we get

p(�v,Tv) ≤ Hp(Su,Tv) ≤ δmax{p( f u, �v), p( f u, Su), p(�v,Tv),
1
2

(p( f u,Tv)+p(�v, Su))}
+L min{dp

m( f u, Su), dp
m(�v,Tv), dp

m( f u,Tv), dp
m(�v, Su)}

p(�v,Tv) ≤ δp(�v,Tv) < p(�v,Tv),

which is a contradiction, then z = �v ∈ Tv.
The weak compatibility of the pair {�,T}, implies that �(�v) = �z ∈ T�v = Tz.
Now we prove z = f z, if not by using (2.2) we get

p( f z, �v) ≤ kHp(Sz,Tv) ≤ kδmax{p( f z, �v), p( f z, Sz), p(�v,Tv),
1
2

(p( f z,Tv)+ p(�v, Sz)}
+kL min{dp

m( f z, Sz), dp
m(�v,Tv), dp

m( f z,Tv), dp
m(�v, Sz)}

p( f z, z) ≤ kδp( f z, z) < p( f z, z),

which is a contradiction, then z = f z ∈ Sz and similarly we obtain z = �z ∈ Tz,
consequently z is a common fixed point for f , �, S and T.

Theorem 2.1 generalizes Theorem 3.1 in paper[23] and Theorem 3.2 of Aydi et
al.[9], also it extends Theorem2.2 in [1] and Corollary 2.6 in [32], to the partial
metric spaces.
If L = 0 and f = � = idX, we obtain Theorem 2.2 in paper[10].

Remark 2.1. In the above Theorem 2.1 we do not have the uniqueness of common fixed
point and we will see that in Example 2.1 below. However if S or T is a single-valued
mapping, then the fixed point is unique.

Obviously, we found in the above proof of Theorem 2.1 z = f z ∈ Sz, if S is a single
valued mapping, then Sz = f z = z.
Suppose there is another common fixed point w, by using (2.2) we get

p(z,w) ≤ Hp(Sz,Tw) ≤ δmax{p( f z, �w), p( f z, Sz), p(�w,Tw),
1
2

(p( f z,Tw), p(�w, Sz))}
+L min{dp

m( f z, Sz), dp
m(�w,Tw), dp

m( f z,Tw), dp
m(�w, Sz)}

≤ δp(z,w) < p(z,w),

which is a contradiction, so the z is unique.
If S = T and f = � we obtain the following corollary:
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Corollary 2.1. Let (X, p be a complete partial metric space, f : X → X and S : X →
CBp(X) two single and set-valued mappings, respectively such that SX ⊆ fX and for all
x, y ∈ X satisfying:

Hp(Sx, Sy) ≤ δM(x, y) + L min{dp
m( f x, Sx), dp

m( f y, Sy), dp
m( f x, Sy), dp

m( f y, Sx)},

where M(x, y) = max{p( f x, f y), p( f x, Sx), p( f y, Sy), p( f x,Sy)+p( f y,Sx)
2 }, if the pair { f , S} is

weakly compatible and f (X) is closed, then S and f have a common fixed point.

Corollary 2.1 generalizes Corollary 2.2 in [23] and Corollary 2.5 of Aydi [8].

Theorem 2.2. Let (X, p) be a complete partial metric space, f , � : X → X, two single
valued and S,T : X→ CBp(X) two set valued mappings satisfying the following conditions:

(a) TX ⊆ fX, SX ⊆ �X
(b) there exists δ > 0 and L ≥ 0 such 2δ < 1 and for all x, y ∈ X we have

Hp(Sx,Ty) ≤ δM(x, y) + L min(dp
m( f x, Sx), dp

m(�y,Ty), dp
m( f x,Ty), dp

m(�y, Sx)),(2.4)

where M(x, y) = max(p( f x, �y), p( f x, Sx), p(�y,Ty), p( f x,Ty), p(�y, Sx))

(c) f (X)or,T(X) is closed.

(d) the two pairs { f , S}, {�,T} are weakly compatible,

then f , �, S and T have a common fixed point.

Proof. Let {yn} be the sequence which defined in (2.3), we choose k in manner that
satisfies 2kδ < 1 which implies that k(δ+ L) < 1 (condition in theorem 1) and so we
have:

M(x2n, x2n+1) = max{p( f x2n, �x2n+1), p( f x2n, Sx2n),

p(�x2n+1,Tx2n+1), p( f x2n,Tx2n+1), p(�x2n+1, Sx2n)}
≤ max{p(y2n, y2n+1), p(y2n, y2n+1), p(y2n+1, y2n+2), p(y2n, yn+2), p(y2n+1, y2n+1)},

≤ {p(y2n, y2n+1), p(y2n+1, y2n+2), p(y2n, y2n+2)},
≤ p(y2n, y2n+1) + p(y2n+1, y2n+2) ≤ 2 max{p(y2n, y2n+1), p(y2n+1, y2n+2)}

min{dp
m( f x2n, Sx2n), dp

m(�x2n+1,Tx2n+1), d
p
m( f x2n,Tx2n+1), dp

m(�x2n+1, Sx2n)}
= min{dp

m(y2n, S2n), dp
m(y2n+1,T2n+1), dp

m(y2n,T2n+1), dp
m(y2n+1, S2n)},

since y2n+1 ∈ Sx2n and Sx2n is closed, then

min{dp
m(y2n,An), dp

m(y2n+1,An+1), dp
m(y2n,An+1), dp

m(y2n+1,An)} = 0,

now by using (2.4) we get:

p(y2n+2, yn+1)} ≤ kHp(Sx2n,Tx2n+1 ≤ kδ(p(y2n, y2n+1) + p(y2n+1, y2n+2))



Common Fixed Point Theorems 563

p(y2n+1, y2n+2) ≤ kδ
1 − kδ

p(y2n, y2n+1),

putting μ = kδ
1−kδ < 1 and by induction we obtain:

p(yn+1, yn+2) ≤ μn+1p(y0, y1),

which implies that
lim
n→∞ p(yn, yn+1) = 0

For all n,m ∈ N such that m > n we have

ps(xn, xm) ≤ 2p(xn, xm) ≤ 2p(xn, xn+1) + 2p(xn+1, xn+2) + ... + 2p(xm−1, xm)

≤ 2μn
(
p(x0, x1) + μp(x0, x1) + ... + μm−1p(x0, x1)

)

≤ 2
μn

1 − μp(x0, x1)→ 0 as n→∞,

this yields that {yn} is a Cauchy sequence in (X, ps) and so it is also in (X, p), since
(X, p) is complete then (X, ps) is complete and {yn} }converges to z ∈ X and we have

lim
n→∞ p(yn, z) = lim

n→∞ p(yn, ym) = p(z, z) = 0

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.2 generalizes and improves Theorem 2 of Altun et al.[6] to the setting
of single- and set-valued mappings. It also generalizes and extends Theorem 3.2
of Berinde[16] and Theorem 3.1 in [1] to the partial metric spaces.
If S = T and f = � we obtain the following corollary:

Corollary 2.2. Let (X, p) be a partial metric space, f : X→ X and S : X→ CBp(X) two
single and set valued mappings respectively satisfying:

Hp(Sx, Sy) ≤ δM(x, y) + L min{p( f x, Sx), p( f y, Sy), p( f x, Sy), p( f y, Sx)},(2.5)

where M(x, y) = max{p( f x, f y), p( f x, Sx), p( f y, Sy), p( f x,Sy)+ p( f y, Sx)}, if the follow-
ing conditions hold:

1. SX ⊆ fX

2. fX is closed

3. the pair { f , S} is weakly compatible,

then S and f have a common fixed point.
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Example 2.1. Let X = [0, 4] endowed with the partial metric:

p(x, y) =
{

0, x = y = 1 or x = y = 2
max{x, y}, otherwise

Consider the mappings f , �, S and T defined by:

f x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
2 , 0 ≤ x < 2
2, x = 2
7
2 , 2 < x ≤ 4

�x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, x ∈ [0, 1) ∪ (1, 2]
1, x = 1
4, 2 < x ≤ 4

Sx = Tx =
{

[0, 1], 0 ≤ x ≤ 2
{2}, 2 < x ≤ 4

Clearly, X with the metric ps(x, y) = max{x, y} − x − y = |x− y| is a complete metric space
and so (X, p) is a complete partial metric space, also the subspace f (X) = [ 1

2 , 1]∪{0} is closed,
also choosing δ = 2

3 .

1. For x, y ∈ [0, 2],we have

Hp(Sx,Ty) = 1 ≤ 4
3
=

2
3

p( f x, �y)

2. For x ∈ [0, 2] and y ∈ (2, 4] we have

Hp(Sx,Ty) = 2 ≤ 8
3
=

2
3

p( f x, �y),

3. For 2 < x ≤ 4 and y ∈ [0, 2], we have

Hp(Sx,Ty) = 2 ≤ 7
3
=

2
3

p( f x, �y)

4. For x, y ∈ (2, 4],we have

Hp(Sx,Ty) = p(2, 2) = 0 ≤ 8
3
=

2
3

p( f x, �y).

Also, 1 and 2 are two coincidence points satisfying f S1 = [0, 1] = S f1, f S2 = {2} = S f2
and �T1 = [0, 1] = T�1, �T2 = {2} = T�2. Consequently, if all hypotheses of Theorem 1 are
satisfied then f , �,S and T have a fixed point and, therefore, 1 and 2 are two common fixed
point. This example illustrate Remark 1 of the non-uniqueness of the common fixed point.
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