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DIFFERENTIAL CALCULUS ON LIE ALGEBRAS

V. Khalili

Abstract. We state the notion of differential calculus based on derivation for Lie alge-

bras. We also construct graded differential algebra and investigate differential calculus

based on derivation for semi-simple Lie algebra sl(n,C). So, we provide the notion of

matrix geometry of a Lie algebra in noncommutative differential geometry.
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1 Introduction

Lie algebras were originally introduced by Sophus Lie, as an algebraic structure used

for the study of linear transformation groups that are now named ”Lie groups”.

Both Lie groups and Lie algebras have become fundamental tools to many branches

of mathematics and theoretical physics. Finite dimensional Lie algebras were inves-

tigated independently by E. Cartan and W. Killing during the period 1800-1900(see

[12]). In 1967 V. G. Kac and R. V. Moody independently discovered a class of infi-

nite dimensional Lie algebras which is called ”Kac-Moody Lie algebras” and includes

finite dimensional simple Lie algebras (see [13]). In 1990 Hoegh-Kron and Torre-

sani [11] initiated ”irreducible quasi-simple Lie algebras” which were investigated

systematically in 1997 by Alison, Azam, Berman, Gao and Pianzola in Memoirs

AMS [1]. They called these Lie algebras ”extended affine Lie algebras”. Various

classes of these Lie algebras have been investigated in many articles (for example see

[2, 3, 14, 15, 16, 21, 22, 23]). There are some applications of Lie algebras which are

non-commutative and non-associative algebras in mathematical physics, statistical

physics, conformal field theory, string theory and quantum groups.

As indicated in [5], the generalization of differential calculus from classical differ-

ential geometry to non-commutative differential geometry is not unique. Namely,

according to the various applications in both mathematics and physics, one can
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consider a notion of differential calculus. There are several approaches to non-

commutative generalizations of the construction of the deRham forms on the al-

gebra C∞(M), of smooth functions on a smooth paracompact manifold M as an

abstract commutative ∗−algebra.

There are two notions of differential calculus on non-commutative algebra.

One approach of differential calculus was given by A. Conns [6] in 1986. He in-

vestigated differential calculus based on the concept of spectral triples. A spectral

triple basically consists of a non-commutative algebra A, a representation of this

algebra on a Hilbert space H on which A is realized as an algebra of bounded oper-

ators, an operator D on H which is responsible for generating differential calculus,

which is named the Dirac operator. This approach is indicated by the term ”non-

commutative Riemannian geometry”, because it emphasizes the metric structure.

The second notion of differential calculus on non-commutative algebra which fo-

cuses on the differential objects, is introduced by Dubois-Violette [7] in 1988. This

non-commutative differential geometry is encoded into a purely algebraic defini-

tion of differential calculus on associative (commutative, non-commutative) algebra

which is called ”derivation based differential calculus”. More precisely, let A be an

associative algebra with a unit. The algebra A is considered as the generalization

of the algebra of smooth functions and the Lie algebra Der(A) of all derivations of

A is considered as the generalization of the Lie algebra of smooth vector fields. The

notions of differential forms can be extracted from the graded differential algebra

C(Der(A),A) of Chevalley- Eilenberg cochains of Lie algebra Der(A) with values

in the Der(A)−module A.

In the present article, we directly use this construction for the graded differ-

ential algebra of Lie algebra. More precisely, we state the notion of differential

calculus based on derivation for Lie algebra in general, which is not necessarily

finite dimensional. We also provide some examples.

To close this introduction, we outline the contents of the paper. In Section 2,

we recall the definition of graded differential algebra and some facts that will be

needed in the sequel. In Section 3, we first review an introduction on Lie algebra

cohomology, which is an essential tool for the concept of graded differential algebra

and differential calculus of Lie algebra. Next, we define differential calculus based on

derivation for Lie algebra. In Section 4, we provide two examples. The first example

indicates the characterization of the differential algebra of Matrix geometry which

is already investigated in [9]. The second example provides the realization of the

concept of differential calculus based on derivation for a semi-simple Lie algebra

sl(n,C).
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2 Preliminaries

All vector spaces and algebras in this note are considered over a fixed field F of

characteristic zero. If otherwise, it will be specified. This section is devoted to

the study of some concepts and definitions that will be extensively used in the last

section.

We first review the definition of graded differential algebra.

Definition 2.1. (Graded vector spaces)

Let V be a vector space (or F-space). By a Z−grading of V we will denote a

family {V i}i∈Z of subspaces of V such that V =
⊕

i∈Z
V i. Given such a grading, we

call V i a degree subspace and an element belonging to a degree subspace V i is said

to be homogeneous of degree i.

Let V and W be two graded vector spaces. A linear map of degree n between

graded vector spaces is a linear map f : V −→ W such that f(V i) ⊆ W i+n for

all i ∈ Z. Define Homn
F
(V ,W) to be the F-subspace of HomF(V ,W) consisting of

homogeneous elements of degree n. Then

HomF(V ,W) =
⊕

n∈Z

Homn
F
(V ,W),

is a graded F-space. If f ∈ HomF(V ,W) are homogeneous elements of degree zero,

we say that f is a graded homomorphism.

Definition 2.2. (Differential graded vector space) A differential graded vector space

is a graded vector space V together with d ∈ Hom1
F
(V ,V) such that d2 = 0. The ho-

mogeneous element of degree 1 is called a differential of a graded vector space V .

Lemma 2.3. Let (V , dV) and (W , dW) be two differential graded vector spaces.

Then HomF(V ,W) is a differential graded vector space.

Proof. Let f ∈ Homn
F
(V ,W). Define

D : Homn
F
(V ,W) −→ Homn+1

F
(V ,W),

by

D(f) = dW ◦ f − (−1)nf ◦ dV .

It is clear that D is a homogeneous element of degree 1. Also

D2(f) = D(dW ◦ f − (−1)nf ◦ dV)

= d2W ◦ f − (−1)n+1dW ◦ f ◦ dV − (−1)n(dW ◦ f ◦ dV

− (−1)n+1f ◦ d2V)

= 0.
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✷

Definition 2.4. A graded F−algebra A is a graded vector space A =
⊕

n∈Z
An,

together with a multiplication such that AmAn ⊆ Am+n, for all m,n ∈ Z. A graded

algebra A is said to be graded commutative if ab = (−1)mnba for all a ∈ Am and

all b ∈ An.

Definition 2.5. (Differential graded algebras)

A differential graded algebra is a graded algebra A =
⊕

n∈Z
An together with a

graded derivation d : A −→ A of degree 1 (anti-derivation) such that d2 = dod = 0.

Thus d satisfies the graded Leibniz rule d(ab) = d(a)b + (−1)nad(b), where a ∈ An

and b ∈ A and also d(An) ⊂ An+1. The anti-derivation d is called a differential of

differential graded algebra A.

Corollary 2.6. Let (V , d) be a graded vector space. Then (HomF(V ,V), D) with

D(f) = d ◦ f − (−1)nf ◦ d , f ∈ Homn
F
(V ,V),

is differential graded algebra.

Proof. By Lemma 2.3 it is enough to show that D satisfies the Leibniz rule.

D(f ◦ g) = d ◦ f ◦ g − (−1)n+mf ◦ g ◦ d)

= d ◦ f ◦ g − (−1)nf ◦ d ◦ g + (−1)nf ◦ d ◦ g

− (−1)n+mf ◦ g ◦ d

= D(f) ◦ g + (−1)nf ◦D(g).

✷

Remark 21. The theory of differential operators on associative algebras is not ex-

tended to the non-associative ones [19]. However, there is a notion of differential

operators on the commutative ring and its generalization to noncommutative geom-

etry which is not unique. The definition of differential operator of order k on Lie

algebras can be find in [18]. Although it is an interesting subject to work on, we

shall not discuss it here.

As an example of graded differential algebra, we now state the graded subspace of

differential operators of order ≤ k. Let A be a unital graded differential algebra with

1 ∈ A0. We may consider A as a graded commutative Lie subalgebra of Hom∗
F
(A,A),

where every element a of A is identified by the operator

a : A −→ A ; a(b) = ab.
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For every integer k we denote, the graded subspace of differential operator of order

≤ k, by

Diffk(A) =
⊕

n∈Z

Diffn
k (A) ⊂ Hom∗

F
(A,A),

It is defined recursively by Diffk(A) = 0 for k < 0 and for k ≥ 0:

Diffk(A) = { f ∈ Hom∗
F
(A,A) : [f, a] ∈ Diffk−1(A), ∀a ∈ A}.

We note that f ∈ Diff0(A) if and only if f(a) = f(1)a and every derivation on A

lies in Diff1(A).

A simple verification by induction on m+ k shows that

Diffm(A)Diffk(A) ⊂ Diffm+k(A),

and

[Diffm(A), Diffk(A)] ⊂ Diffm+k−1(A).

Therefore Diff(A) =
⋃

k Diffk(A) is a graded differential Lie subalgebra of Hom∗
F
(A,A).

In the study of differential calculus over an algebra (commutative, noncommu-

tative complex) as the generalization of differential forms and the geometry of fiber

bundle through differential forms, the Cartan,s operator is one of the main tools

[4]. This notion can be considered in the graded differential algebra on Lie algebra.

Definition 2.7. (Cartan,s operator)

An operation of a Lie algebra G on a graded differential algebra A is a linear

mapping x 7−→ ix of G into the space of anti-derivations of degree −1 of A such

that

• (a) for all x, y ∈ G, we have ixiy + iyix = 0

• (b) for all x, y ∈ G, we have Lxiy − iyLx = i[x,y],

where Lx denotes the derivation of degree 0 of A defined by

Lx := ix ◦ d+ d ◦ ix.

(b) implies that [Lx, Ly] = L[x,y] for all x, y ∈ G. Therefore, we have a represen-

tation of Lie algebra G to Lie algebra of graded anti-derivations of degree −1 of A.

That is, the map x 7−→ Lx is a Lie algebra homomorphism, since Lx ◦ d = d ◦ Lx

for all x ∈ G.

We next recall the definition of derivation of a Lie algebra.
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Definition 2.8. (Derivation of Lie algebra)

Let G be a Lie algebra over a field F with center Z(G). A derivation of Lie algebra

G is a linear map ∂ : G −→ G such that

(2.9) ∂[x, y] = [∂(x), y] + [x, ∂(y)],

for all x, y ∈ G.

The vector space of all derivations of G denoted by Der(G) is a Lie algebra for

the Lie bracket [∂, δ] = ∂ ◦ δ − δ ◦ ∂ and also a Z(G)−module for the product

(z∂)(x) = z∂(x) where z ∈ Z(G) and ∂ ∈ Der(G). The subspace Inn(G) = {adx :

y −→ [x, y] | x ∈ G} ⊂ Der(G) which is called the vector space of inner derivations,

is a Lie ideal and also a Z(G)−submodule.

Example 2.10. All derivations of a general linear Lie algebra gln(F), a special

linear Lie algebra sln(F), and orthogonal Lie algebras o2n(F) and o2n+1(F) are inner.

Also Z(gln(F)) = F and all other Lie algebras are centerless. Thus Der(gln(F)) =

sln(F) and a derivation of other Lie algebras are itself.

3 Differential calculus

The Lie algebras involved in this section are not necessarily finite dimensional.

First of all, we briefly review an introduction to Lie algebra cohomology which is an

essential requirement for the graded differential algebra for Lie algebras. For more

details see the excellent source [10]. Secondly, we define the differential calculus

based on derivation of a Lie algebra.

Definition 3.1. (n-cochains on G)

Let G be a Lie algebra over the field F and M be a G−module with the rep-

resentation ρ : G −→ End(M). An M−valued n−cochain βn of G on M is the

skew-symmetric F−multilinear mapping

βn :

n∧
G −→ M ; βn(x1 ∧ x2 ∧ ... ∧ xn) = βn(x1, x2, ..., xn),

where all x1, x2, ..., xn ∈ G. The vector space of these n−cochains which forms

a G−module will be denoted by Cn(G,M), and is called the Chevalley-Eilenberg

cochain of G.

Definition 3.2. (Coboundary operator on G)

Let C(G,M) =
⊕

n C
n(G,M) be the N−graded vector space of all M−valued

cochains of Lie algebra G on M. The coboundary operator d : Cn(G,M) −→ Cn+1(G,M)
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is a homogeneous endomorphism of degree 1 of C(G,M) defined by its action on the

cochains:

d(βn)(x0, ..., xn) =

n∑

k=0

(−1)kρ(xk)(βn(x0, ..., x̂k, ..., xn)

+
∑

0≤i<j≤n

(−1)i+jβn([xi, xj ], x0, ..., x̂i, ..., x̂j , ..., xn),

where βn ∈ Cn(G,M) and x1, x2, ..., xn ∈ G. Notice that the notation ” ”̂ means

omission.

Using the Jacobi identity and the fact that ρ is the Lie algebra homomorphism,

ρ([x1, x2]) = [ρ(x1), ρ(x2)], it may be verified that d2 = 0.

Lemma 3.3. Let G be a Lie algebra and A be an algebra which G acts on A by

derivation. Then the N−graded vector space of all A−valued cochains C(G,A) =⊕
n C

n(G,A) is a graded differential algebra.

Proof. First, we observe that the multiplication on C(G,A) is obtained by taking the

product in A after evaluation. Next, suppose that βn ∈ Cn(G,A) be an A−valued

n−cochain of G on A and that βn is an anti-symmetric F−multilinear map. Since

d is a coboundary operator, we have d(Cn(G,A)) ⊆ Cn+1(G,A), and the derivation

property of the action of A on G implies that d is a graded derivation of degree 1

on C(G,A). Therefore (C(G,A), d) is a graded differential algebra. ✷

Definition 3.4. (Cochain complex)

Let Cn(G,M) be the vector space of all M−valued n−cochains of G on M. Let

βn ∈ Cn(G,M) and d(βn) ∈ Cn+1(G,M) be as defined in the Definition 3.2, then

we obtain the cochain complex

0 −→ M
d1−→ C1(G,M)

d2−→ C2(G,M) −→ ...
dn−→ Cn(G,M) −→ ...,

which is called the Chevalley-Eilenberg complex and is denoted by C∗(G,M).

Definition 3.5. (Lie algebra n−cocycle, n−coboundary, cohomology)

Let C∗(G,M) be the Chevalley-Eilenberg complex with the coefficients in G−module

M. As always, we denote the space of n−cocycles by

Zn(G,M) := { β ∈ Cn(G,M) : dn(β) = 0} = ker dn,
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and the space of n−coboundaries by

Bn(G,M) := { β ∈ Cn(G,M) : ∃β′ ∈ Cn−1(G,M), dn−1(β
′) = β}.

Then we define the n−th cohomology space of Lie algebra G with a value in M as

the quotient vector space

Hn(G,M) = Zn(G,M)/Bn(G,M).

By the convention B0(G,M) = 0, the zero-cochain is defined as constant from G to

M. Thus, a zero-cochain is a vector in M.

Remark 31. For finite dimensional Lie algebra G, there is an algebraic interpre-

tation of the n−th cohomology space for n = 1 which is important. This and more

interpretations may be found in [10]. Suppose that M acts on G by ”·”, define

Der(G,M) := {f ∈ HomF(G,M) : f([x, y]) = x · f(y)− y · f(x)},

for all x, y ∈ G, and also

PDer(G,M) := {f ∈ HomF(G,M) : f(x) = x ·m},

for all x ∈ G and for some m ∈ M. Then if one-cochain β1 is a one-cocycle, we

have

(d1β1)(x, y) = ρ(x)β1(y)− ρ(y)β1(x) − β1([x, y])(3.6)

= 0, ∀x, y ∈ G.

A one-cochain β1 is a one-coboundary if there is a zero-cochain m ∈ M such that

d1 m = β1, that is, if

β1(x) = ρ(x) m = x ·m, ∀x ∈ G.(3.7)

Therefore, from (3.6) and (3.7) we have

H1(G,M) = Z1(G,M)/B1(G,M) = Der(G,M)/PDer(G,M).

In case M = G, with the adjoint action, we get Der(G,M) = Der(G) and PDer(G,M) =

Inn(G), thus

H1(G) = Der(G)/Inn(G) = Out(G),

the Lie algebra of outer derivation of G. A case of interest corresponds to taking

M = F with the trivial action. Then β is a coboundary if β = 0, and the cocycle

condition gives that β([x, y]) = 0, for all x, y ∈ G. This implies that the one-cocycles

are linear maps vanishing on [G,G]. Thus we have

H1(G,F) = (G/[G,G])∗.

If G is semi-simple we have [G,G] = G, then H1(G) = 0.
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Example 3.8. Consider the finite dimensional complex semi-simple Lie algebra

sln(C). We have H1(sln(C)) = {0}, that is, all derivations on sln(C) are inner,

and H1(sln(C),C) = {0}. There is a proposition (see below) which implies that

H1(sln(C),M) = {0} for any finite dimensional module M.

Proposition 3.9. (Whitehead Lemma)

Let G be a finite dimensional complex semi-simple Lie algebra and M be a finite

dimensional G−module. Then

Hn(G,M) = 0 , n = 1, 2.

Proof. The proof may be found in Section 3.12 of [20]. ✷

As mentioned in the introduction, the notion of differential calculus based on

derivation was introduced by M. Dubois-Violette in [7]. He provides a general

and purely algebraic definition of differential calculus based on derivation for any

associative algebra. In [8], a more general systematic study is proposed which uses

the categorical point of view on algebras. Following this, we can also directly use

this construction on Lie algebras as follows:

Let G be any Lie algebra over the field F. Suppose that Der(G) is a Lie algebra of

all derivations of G into itself. Consider C(Der(G),G) =
⊕∞

n=0 C
n(Der(G),G) the

graded differential algebra of all G−valued cochains of Der(G), with a differential

d. Moreover, Der(G) is also a module over the center Z(G) of G. By the derivation

we then have the property [∂, zδ] = z[∂, δ] + ∂(z)δ, for all ∂, δ ∈ Der(G) and all

z ∈ Z(G). Using this property we can extract by Z(G)−multilinearity a graded dif-

ferential subalgebra ΩDer(G) of C(Der(G),G) which consists of Z(G)−multilinear

Chevalley-Eilenberg cochains of Lie algebra Der(G). Notice that ΩDer(G) is in-

variant by the differential d and is therefore a graded differential subalgebra of

C(Der(G),G).

Definition 3.10. (The graded differential algebra ΩDer(G) )

Let Ωn
Der(G) be a set of Z(G)−multilinear anti-symmetric maps from Der(G)n

to G, with Ω0
Der(G) = G and let ΩDer(G) =

⊕∞

n=0 Ω
n
Der(G). Then the space ΩDer(G)

equipped with differential d (see Definition 3.2) is a graded differential algebra of G.

Since Ω0
Der(G) = G, it follows that there is a smaller graded differential subal-

gebra of C(Der(G),G) generated by G. So the graded differential algebra ΩDer(G)

contains a graded differential subalgebra as follows:

Definition 3.11. (The graded differential algebra sΩDer(G))

We define the sΩDer(G), as the smallest graded differential subalgebra of ΩDer(G)

generated in degree zero by G.
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Now we are ready to define differential calculus based on derivation for Lie

algebra G.

Definition 3.12. (Differential calculus on Lie algebra G)

Let G be a Lie algebra over a fixed field F with center Z(G). Consider the graded

differential algebra ΩDer(G) =
⊕∞

n=0 Ω
n
Der(G) or sΩDer(G). Then we obtain the

Chevally-Eielinberg subcomplex

0 −→ G
d0−→ Ω1

Der(G)
d1−→ Ω2

Der(G) −→ ...
dn−→ Ωn

Der(G) −→ ...,

which is called differential calculus based on derivation for Lie algebra G. It is

finite if Lie algebra G is finite dimensional.

The notion of the Cartan operation of Lie algebra Der(G) on graded differential

algebra ΩDer(G) can be considered in this case, which we will describe below:

Let (ΩDer(G), d) be a graded differential algebra on Lie algebra G. We define an

inner product which is a graded derivation of degree −1 on Ωn
Der(G) by

iχ : Ωn
Der(G) −→ Ωn+1

Der (G) , iχ(βn)(χ1, ..., χn−1) = βn(χ, χ1, ..., χn−1),

for all χ, χi ∈ Der(G) and βn ∈ Ωn
Der(G). By this definition iχ = 0 on Ω0

Der(G) = G.

Therefore the associated Lie derivative Lχ is the graded derivation of degree zero

on ΩDer(G) which is defined by

(3.13) Lχ = iχd+ diχ.

It is easy to cheek that χ 7−→ iχ is an operation of Der(G) on ΩDer(G), which

satisfy

(3.14) [Lχ1
, iχ2

] = i[χ1, χ2],

for all χ1, χ2 ∈ Der(G). It follows from (3.13) and (3.14) that

(3.15) [Lχ, d] = 0 , [Lχ1
, Lχ2

] = L[χ1, χ2],

for all χ1, χ2 ∈ Der(G). Relation (3.15) implies that there is a Lie algebra homo-

morphism of Der(G) into the Lie algebra Ω0
Der(G) = G of all derivations of degree

zero of ΩDer(G).
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4 Defferentiall calculus on Matrix Lie algebra

In this section we use the notion of differential calculus based on derivation as stated

in the previous section and we provide two examples relative to it. The first example

investigates the differential calculus and graded differential algebra of the reductive

Lie algebra gln(C), which is the Lie algebra of all complex n×nmatrices. The second

example describes differential calculus based on derivation and a presentation of the

graded differential algebra of a finite dimensional semi-simple Lie algebra sln(C).

Example 4.1. The graded differential algebra of gln(C).

The study of this example was initiated in [9]. A complete description can be

found in [17]. The main result can be summarized as bellow:

Proposition 4.2. Suppose that gln(C) is the Lie algebra of complex n×n matrix

with n ≥ 2. One has the following:

• Z(gln(C)) = C.

• Der(gln(C))= vInn(gln(C)∼= sln(C). The explicit isomorphism associates to

any X∈sln(C) the derivation adXE=[X,E] for any E ∈ gln(C) and Out(gln(C))=

0.

• The differential of Chevaly-Elinberg complex of sln(C) is represented on

gln(C) by the adjoint representation. Then

sΩDer(gln(C)) = ΩDer(gln(C)) ∼= gln(C)⊗
∧

sln(C)
∗.

• There exists a one-cocycle iθ ∈ Ω1
Der(gln(C)) such that

iθ(adE) = E −
1

n
Tr(E)I,

for all E ∈ gln(C), where Tr(E) is the trace of matrix E. This cocycle makes the

isomorphism

Inn(gln(C)) ∼= sln(C).

• For all E ∈ gln(C) we have

dE = [iθ, E] ∈ Ω1
Der(gln(C)).

This is not true on Ωn
Der(gln(C)) for large n. ✷

Example 4.3. The graded differential algebra of sln(C).

We know that sln(C) = {X ∈ gln(C) : Tr(X) = 0} is a subalgebra of gln(C).

It is called special linear Lie algebra. The Lie algebra sln(C) spanned by all Eij for
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i 6= j together with the diagonal matrices hi = Eii − E1+1 i+1 for 1 ≤ i ≤ n − 1.

Recall that Eij is the complex n × n−matrices with 1 in the (i, j) position and 0

elsewhere. Hence the dimension of sln(C) is n2 − 1. Here we compute the structure

constant of sln(C). First of all, we note that

[Eij , Ekl] = δjkEil − δliEkj .

Secondly, since the h ,
i s are all diagonal matrices, we have [hi, hj ] = 0. Finally,

[hi, Ekl] = CiklEkl,

where Cikl = 0, 1, 2,−1,−2 depending on i, j and k. By convention, we will denote

by {ek}
n2−1
k=1 , the basis of sln(C) and

[ei, ej ] =

n∑

k=1

Ck
ijek,

where Ck
ij ∈ C is the structure constant.

First, we describe the differential calculus of sln(C), n ≥ 2 in a more general

case.

We know that sln(C) is a centerless Lie algebra with dimension n2 − 1. Any

derivation of sln(C) is an inner derivation, thus the Lie algebra Der(sln(C)) identi-

fies canonically with sln(C). That is, Der(sln(C)) = sln(C) acts on sln(C) via inner

derivation. In this case, sln(C) is an invariant subalgebra of Der(sln(C)) and is also

a Der(sln(C))−module via the adjoint representation. Let C(Der(sln(C)), sln(C)

be the graded differential algebra of all sln(C)−valued n−cochains on sln(C). An ele-

ment βn ∈ Cn(Der(sln(C)), sln(C) is an n−linear anti-symmetric map of Der(sln(C))
n

to sln(C) defined by

(∂1, ..., ∂n) 7−→ βn(∂1, ..., ∂n) ∈ sln(C).

Note that Cn(Der(sln(C)), sln(C)) is a Der(sln(C))−module via the adjoint ac-

tion. Since sln(C) is centerless and all derivations of it are inner, the graded

differential algebra ΩDer(sln(C)), which is equal to sΩDer(sln(C)), coincides with

C(Der(sln(C)), sln(C)) itself. Then we obtain the subcomplex

0 −→ sln(C)
d0−→ Ω1

Der(sln(C))
d1−→ ...

dn−→ Ωn2−1
Der (sln(C)),

as the differential calculus based on derivation for sln(C), where the coboundary

operator is defined by

dk(βk)(∂0, ..., ∂k) =

k∑

i=0

(−1)i[∂i, βk(∂0, ..., ∂̂i, ..., ∂k)]

+
∑

0≤i<j≤k

(−1)i+jβk([∂i, ∂j ], ∂0, ..., ∂̂i, ..., ∂̂j , ..., ∂k).(4.4)
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Let us describe the one-coboundary and one-cocycle on sln(C). By (4.4) a one-

cochain β1 is one-coboundary if there exists a zero-cochain E ∈ sln(C) such that

d0E = β1. That is,

(4.5) (d0E)(∂) = [∂,E] = −adE∂, for all ∂ ∈ Der(sln(C)).

If one-cochain β1 is a one-cocycle, then

(d1β1)(∂, δ)) = [∂, β1(δ)] − [δ, β1(∂)]− β1([∂, δ]) = 0.(4.6)

It follows from (4.5) that any one-coboundary is an inner derivation on sln(C).

Also, (4.6) implies that any one-cocycle on sln(C) satisfies

β1([∂, δ]) = [β1(∂), δ] + [∂, β1(δ)].

Next, as in the general case, there is a Cartan operation of the Lie algebra Der(sln(C))

in the graded differential algebra ΩDer(sln(C)), which will be defined as follows:

For any ∂ ∈ Der(sln(C)) we can define an anti-derivation i∂ of degree −1 on

ΩDer(sln(C)) by

i∂βk(δ1, ..., δk−1) = βk(∂, δ1, ..., δk−1), k ≥ 1

for βk ∈ Ωk
Der(sln(C)) and δ1, δ2, ..., δk−1 ∈ Der(sln(C). In this case the Lie deriva-

tive is defined by

L∂ = dk ◦ i∂ + i∂ ◦ dk,

which is a derivation of degree zero on ΩDer(sln(C)). One may verify that

i∂1
i∂2

+ i∂2
i∂1

= 0, [L∂1
, L∂2

] = i[∂1,∂2],

and also [L∂1
, L∂2

] = L[∂1,∂2], for all ∂1, ∂2 ∈ Der(sln(C)).

Finally, we give a presentation in terms of generators and relations in our in-

vestigation of the differential calculus and graded differential algebra of sln(C).

Let {ek}
n2−1
k=1 be the basis of sln(C) and ∂k = adek, k ∈ {1, 2, ..., n2 − 1} be the

basis element of Der(sln(C)). Then {∂k}
n2−1
k=1 forms a basis of Der(sln(C)) and

[∂k, ∂l] = Cm
kl∂m. Let {θk}n

2−1
k=1 be the dual basis of {∂k}

n2−1
k=1 in sln(C)

∗, that is,

θk(∂l) = δkl. Since one-cocycles β ∈ Ω1
Der(sln(C)) are endomorphisms of sln(C), so

they can be identified in Ω1
Der(sln(C)) to 1⊗ sln(C). We then have ΩDer(sln(C)) =

sln(C)⊗sln(C)
∗ together with {ek⊗θm} as a basis for the graded differential algebra

of sln(C). So, from (4.5), we have

d0(el) = Cl
mlek ⊗ θm,(4.7)
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and from (4.6)

d1(ek ⊗ θm) = Cl
nkel ⊗ (θn ∧ θm)−

1

2
Cm

nrek ⊗ (θn ∧ θr).(4.8)

Therefore, in the graded differential algebra ΩDer(sln(C)) we have

(4.9) ek ⊗ θm = θm ⊗ ek,

and

(4.10) θm ∧ θn = −θn ∧ θm.

Also, the differential d of ΩDer(sln(C)) is given by

del = Ck
mlek ⊗ θm, dθk = −

1

2
Ck

lmθl ∧ θm.(4.11)

Note that the Jacobian identity implies that d2 = 0. Relations (4.9), (4.10) and

(4.11), together with the generators {ek⊗θm}, provide a presentation for ΩDer(sln(C)).
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