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α−SERIES FOR QUADRUPLED FIXED POINT

Animesh Gupta

Abstract. This manuscript has two aims: first, we extend the definitions of compatibility
and weakly reciprocally continuity, for a quadvariate mapping F and a self-mapping �
akin to a compatible mapping as introduced by Choudhary and Kundu (Nonlinear Anal.
73:2524-2531, 2010) for a bivariate mapping F and a self-mapping g. Further, using these
definitions, we establish quadrupled coincidence and fixed point results by applying
the new concept of an α-series for a sequence of mappings, introduced by Sihag et al.
(Quaest. Math. 37:1-6, 2014), in the setting of partially ordered metric spaces.
Keywords: α-series; compatible mappings; quadrupled coincidence point; quadrupled
fixed point; partially ordered metric space.

1. Introduction

Since the year 1922, Banachs contraction principle, due to its simplicity and
applicability, has been a very popular tool in modern analysis, especially in non-
linear analysis including its applications to differential and integral equations,
variational inequality theory, complementarity problems, equilibrium problems,
minimization problems and many others. Also, many authors have improved,
extended and generalized this contraction principle in several ways. Existence of
fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reur-
ings [30] further studied by Nieto and Rodriguez - Lopez [29]. Samet and Vetro [37]
introduced the notion of fixed point of N order in case of single-valued mappings.
It should be noted that through the coupled fixed point (for N = 2) and tripled fixed
point (for N = 3)technique we cannot solve a system with the following form:

x4 + 6yzw − 9x + 12 = 0,
y4 + 6xzw − 9y + 12 = 0,
z4 + 6yxw − 9z + 12 = 0
w4 + 6yxz − 9w + 12 = 0.

Received March 14, 2015.; Accepted October 24, 2015.
2010 Mathematics Subject Classification. Primary 15A24; Secondary 15A29, 47H10

663



664 Animesh Gupta

In particular for N = 4 (Quadruple case) i.e., Let (X,�) be partially ordered set
and (X, d) be a complete metric space. We consider the following partial order on
the product space X4 = X × X × X × X

(u, v, r, t) � (x, y, z,w) i f f x � u, y � v, z � r, t � w,(1.1)

where (u, v, r, t), (x, y, z,w) ∈ X4.
Regarding this partial order Karapinar [26] give the following definitions,

Definition 1.1. Let (X,�) be a partially ordered set and F : X4 → X. We say that
F has the mixed monotone property if F(x, y, z,w) is monotone non-decreasing in x
and z and it is monotone non-increasing in y and w, that is, for any x, y, z,w ∈ X

x1, x2 ∈ X, x1 � x2 =⇒ F(x1, y, z,w) � F(x2, y, z,w)
y1, y2 ∈ X, y1 � y2 =⇒ F(x, y2, z,w) � F(x, y1, z,w)
z1, z2 ∈ X, z1 � z2 =⇒ F(x, y, z1,w) � F(x, y, z2,w)

w1,w2 ∈ X, w1 � w2 =⇒ F(x, y, z,w2) � F(x, y, z,w1)(1.2)

Definition 1.2. An element (x, y, z,w) ∈ X4 is called a quadruple fixed point of
F : X4 → X if

F(x, y, z,w) = x, F(y, z,w, x) = y,

F(z,w, x, y) = z, F(w, x, y, z) = w.(1.3)

Definition 1.3. Let (X, d) be a complete metric space. It is called metric on X4, the
mapping d : X × X→ X with

d[(x, y, z, t), (u, v,w, s)] = d(x, u)+ d(y, v)+ d(z,w) + d(t, s).

Akin to the concept of �-mixed monotone property for a quadvariate mapping,
F : X4 → X and a self-mapping, � : X→ X, is as follows.

Definition 1.4. Let (X,�) be a partially ordered set and F : X4 → X and � : X →
X. We say that F has the �−mixed monotone property if F(x, y, z, t) is monotone
nondecreasing in x and z, and if it is monotone non-increasing in y and t, that is,
for any x, y, z, t ∈ X,

x1, x2 ∈ X, �(x1) � �(x2)⇒ F(x1, y, z, t) � F(x2, y, z, t),

y1, y2 ∈ X, �(y1) � �(y2)⇒ F(x, y1, z, t) � F(x, y2, z, t),

z1, z2 ∈ X, �(z1) � �(z2)⇒ F(x, y, z1, t) � F(x, y, z2, t)

and
t1, t2 ∈ X, �(t1) � �(t2)⇒ F(x, y, z, t1) � F(x, y, z, t2).
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Now, we introduce the concept of compatible mapping for a quadvariate mapping
F and a self-mapping � akin to compatible mapping as introduced by Choudhary
and Kundu [8] for a bivariate mapping F and a self-mapping �.

Definition 1.5. Let mapping F and g where F : X4 → X and � : X→ X are said to
be compatible if

lim
n→+∞ d(�(F(xn, yn, zn, tn)), F(�(xn), �(yn), �(zn), �(tn))) = 0,

lim
n→+∞ d(�(F(yn, zn, tn, xn)), F(�(yn), �(zn), �(tn), �(xn))) = 0,

lim
n→+∞ d(�(F(zn, tn, xn, yn)), F(�(zn), �(tn), �(xn), �(yn))) = 0,

and
lim

n→+∞ d(�(F(tn, xn, yn, zn)), F(�(tn), �(xn), �(yn), �(zn))) = 0,

whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞F(xn, yn, zn, tn) = lim

n→+∞ �(xn) = x,

lim
n→+∞F(yn, zn, tn, xn) = lim

n→+∞ �(yn) = y,

lim
n→+∞ F(zn, tn, xn, yn) = lim

n→+∞ �(zn) = z,

and
lim

n→+∞F(tn, xn, yn, zn) = lim
n→+∞ �(tn) = t,

for all x, y, z, t ∈ X.

Definition 1.6. The mappings F : X4 → X and � : X→ X are called:
(i) Reciprocally continuous if

lim
n→+∞�(F(xn, yn, zn, tn))=�(x) and lim

n→+∞F(�(xn), �(yn), �(zn), �(tn))=F(x, y, z, t),

lim
n→+∞�(F(yn, zn, tn, xn))=�(y) and lim

n→+∞F(�(yn), �(zn), �(tn), �(xn))=F(y, z, t, x)

lim
n→+∞�(F(zn, tn, xn, yn))=�(z) and lim

n→+∞F(�(zn), �(tn), �(xn), �(yn))=F(z, t, x, y),

and

lim
n→+∞�(F(tn, xn, yn, zn))=�(t) and lim

n→+∞F(�(tn), �(xn), �(yn), �(zn))=F(t, x, y, z),

whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞F(xn, yn, zn, tn) = lim

n→+∞ �(xn) = x,
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lim
n→+∞F(yn, zn, tn, xn) = lim

n→+∞ �(yn) = y,

lim
n→+∞ F(zn, tn, xn, yn) = lim

n→+∞ �(zn) = z,

and
lim

n→+∞F(tn, xn, yn, zn) = lim
n→+∞ �(tn) = t,

for all x, y, z, t ∈ X.

(ii)Weakly reciprocally continuous if

lim
n→+∞ �(F(xn, yn, zn, tn))=�(x) or lim

n→+∞F(�(xn), �(yn), �(zn), �(tn))=F(x, y, z, t),

lim
n→+∞ �(F(yn, zn, tn, xn))=�(y) or lim

n→+∞F(�(yn), �(zn), �(tn), �(xn))=F(y, z, t, x)

lim
n→+∞�(F(zn, tn, xn, yn))=�(z) or lim

n→+∞F(�(zn), �(tn), �(xn), �(yn))=F(z, t, x, y),

and

lim
n→+∞ �(F(tn, xn, yn, zn))=�(t) or lim

n→+∞F(�(tn), �(xn), �(yn), �(zn))=F(t, x, y, z),

whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞F(xn, yn, zn, tn) = lim

n→+∞ �(xn) = x,

lim
n→+∞F(yn, zn, tn, xn) = lim

n→+∞ �(yn) = y,

lim
n→+∞ F(zn, tn, xn, yn) = lim

n→+∞ �(zn) = z,

and
lim

n→+∞F(tn, xn, yn, zn) = lim
n→+∞ �(tn) = t,

for all x, y, z, t ∈ X.

Definition 1.7. Let (X, d,�) be a partially ordered metric space. We say that X is
regular if the following conditions hold:
(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n ≥ 0,
(ii) if a non-increasing sequence {yn} is such that yn → y, then y � yn for all n ≥ 0.

Definition 1.8. Let {an} be a sequence of non-negative real numbers. We say that a
series Σ+∞n=1an is an α−series, if there exist 0 < α < 1 and nα ∈ N such that Σk

i=1ai ≤ αk
for each k ≥ nα.

Remark 1.1. Each convergent series of non-negative real terms is an α−series.However,
there are also divergent series that are α−series. For example, Σ+∞n=1

1
n is an α−series.
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2. Main Results

Let (X,�) be a partially ordered set, � be a self-mapping on X and {Ti}i∈N be a
sequence of mappings from X4 into X such that Ti(X4) ⊆ �(X) and

Ti(x, y, z, t) � Ti+1(u, v,w, s),
Ti+1(v,w, s, u) � Ti(y, z, t, x)

Ti(z, t, x, y) � Ti+1(w, s, u, v),
Ti+1(s, u, v,w) � Ti(t, x, y, z)(2.1)

for x, y, z, t, u, v,w, s ∈ X with �(x) � �(u), �(v) � �(y), �(z) � �(w) and �(s) � �(t).
In the proof of our main theorem, we consider sequences that are constructed

in the following way.

Let x0, y0, z0, t0 ∈ X be such that

�(x0) � T0(x0, y0, z0, t0), �(y0) � T0(y0, z0, t0, x0),
�(z0) � T0(z0, t0, x0, y0) and �(t0) � T0(t0, x0, y0, z0).

Since T0(X4) ⊆ �(X), we can choose x1, y1, z1, t1 ∈ X such that

�(x1) = T0(x0, y0, z0, t0),

�(y1) = T0(y0, z0, t0, x0),

�(z1) = T0(z0, t0, x0, y0)

and
�(t1) = T0(t0, x0, y0, z0).

Again we can choose x2, y2, z2, t2 ∈ X such that

�(x2) = T1(x1, y1, z1, t1),

�(y2) = T1(y1, z1, t1, x1),

�(z2) = T1(z1, t1, x1, y1)

and
�(t2) = T1(t1, x1, y1, z1).

Continuing like this, we can construct three sequences {xn}, {yn}, and {xn} such
that

�(xn+1) = Tn(xn, yn, zn, tn),
�(yn+1) = Tn(yn, zn, tn, xn),
�(zn+1) = Tn(zn, tn, xn, yn),
�(tn+1) = Tn(tn, xn, yn, zn)(2.2)
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for all n ≥ 0.

Now, by using mathematical induction, we prove that

�(xn) � �(xn+1), �(yn) � �(yn+1),
�(zn) � �(zn+1), �(tn) � �(tn+1)(2.3)

for all n ≥ 0.

Since
�(x0) � T0(x0, y0, z0, t0),

�(y0) � T0(y0, z0, t0, x0),

�(z0) � T0(z0, t0, x0, y0)

and
�(t0) � T0(t0, x0, y0, z0).

In view of
�(x1) = T0(x0, y0, z0, t0),

�(y1) = T0(y0, z0, t0, x0),

�(z1) = T0(z0, t0, x0, y0)

and
�(t1) = T0(t0, x0, y0, z0),

we have �(xn) � �(xn+1), �(yn) � �(yn+1), �(zn) � �(zn+1) and �(tn) � �(tn+1), that is,
2.3 holds for n = 0. We presume that 2.3 holds for some n > 0. Now, by 2.2 and 2.3,
one deduces that

�(xn+1) = Tn(xn, yn, zn, tn) � Tn+1(xn+1, yn+1, zn+1, tn+1) = �(xn+2)
�(yn+2) = Tn+1(yn+1, zn+1, tn+1, xn+1) � Tn(yn, zn, tn, xn) = �(yn+1)
�(zn+1) = Tn(zn, tn, xn, yn) � Tn+1(zn+1, tn+1, xn+1, yn+1) = �(zn+2)
�(tn+2) = Tn+1(tn+1, xn+1, yn+1, zn+1) � Tn(tn, xn, yn, zn) = �(tn+1).

Thus by mathematical induction, we conclude that 2.3 holds for all n0. There-
fore, we have

�(x0) � �(x1) � �(x2) � · · · � �(xn+1) � . . . ,
�(y0) � �(y1) � �(y2) � · · · � �(yn+1) � . . . ,
�(z0) � �(z1) � �(z2) � · · · � �(zn+1) � . . . ,
�(t0) � �(t1) � �(t2) � · · · � �(tn+1) � . . . .

In view of the above considerations, we revise Definitions 1.4 and 1.5 as follows.
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Definition 2.1. Let (X, d) be a metric space. {Ti}i∈N and � are compatible if

limn→+∞ d(�(Tn(xn, yn, zn, tn)),Tn(�(xn), �(yn), �(zn), �(tn))) = 0,
limn→+∞ d(�(Tn(yn, zn, tn, xn)),Tn(�(yn), �(zn), �(tn), �(xn))) = 0,
limn→+∞ d(�(Tn(zn, tn, xn, yn)),Tn(�(zn), �(tn), �(xn), �(yn))) = 0,
limn→+∞ d(�(Tn(tn, xn, yn, zn)),Tn(�(tn), �(xn), �(yn), �(zn))) = 0,

whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

limn→+∞ Tn(xn, yn, zn, tn) = limn→+∞ �(xn+1) = x,

limn→+∞ Tn(yn, zn, tn, xn) = limn→+∞ �(yn+1) = y,

limn→+∞ Tn(zn, tn, xn, yn) = limn→+∞ �(zn+1) = z,

limn→+∞ Tn(tn, xn, yn, zn) = limn→+∞ �(tn+1) = t,

for all x, y, z, t ∈ X.

Definition 2.2. The mappings {Ti}i∈N and � : X→ X are called:
(i) Reciprocally continuous if

lim
n→+∞�(Tn(xn, yn, zn, tn))=�(x) and lim

n→+∞Tn(�(xn), �(yn), �(zn), �(tn))=T(x, y, z, t),

lim
n→+∞�(Tn(yn, zn, tn, xn))= �(y) and lim

n→+∞Tn(�(yn), �(zn), �(tn), �(xn))=T(y, z, t, x),

lim
n→+∞�(Tn(zn, tn, xn, yn))=�(z) and lim

n→+∞Tn(�(zn), �(tn), �(xn), �(yn))=T(z, t, x, y),

lim
n→+∞�(Tn(tn, xn, yn, zn))=�(t) and lim

n→+∞Tn(�(tn), �(xn), �(yn), �(zn))=T(t, x, y, z),

whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞Tn(xn, yn, zn, tn) = lim

n→+∞ �(xn+1) = x,

lim
n→+∞Tn(yn, zn, tn, xn) = lim

n→+∞ �(yn+1) = y,

lim
n→+∞Tn(zn, tn, xn, yn) = lim

n→+∞ �(zn+1) = z,

lim
n→+∞Tn(tn, xn, yn, zn) = lim

n→+∞ �(tn+1) = t,

for some x, y, z, t ∈ X.

(ii)Weakly reciprocally continuous if

lim
n→+∞ �(Tn(xn, yn, zn, tn)) = �(x),

lim
n→+∞ �(Tn(yn, zn, tn, xn)) = �(y),

lim
n→+∞ �(Tn(zn, tn, xn, yn)) = �(z),

lim
n→+∞ �(Tn(tn, xn, yn, zn)) = �(t),
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whenever {xn}, {yn}, {zn} and {tn} are sequences in X, such that

lim
n→+∞Tn(xn, yn, zn, tn) = lim

n→+∞ �(xn+1) = x,

lim
n→+∞Tn(yn, zn, tn, xn) = lim

n→+∞ �(yn+1) = y,

lim
n→+∞Tn(zn, tn, xn, yn) = lim

n→+∞ �(zn+1) = z,

lim
n→+∞Tn(tn, xn, yn, zn) = lim

n→+∞ �(tn+1) = t,

for some x, y, z, t ∈ X.

Now, we establish the main result of this manuscript as follows.

Theorem 2.1. Let (X, d,�) be a partially ordered metric space. Let � be a self-mapping
on X and {Ti}i∈N be a sequence of mappings from X4 into X such that Ti(X4) ⊆ �(X), �(X)
is a complete subset of X, {Ti}i∈N and � are compatible, weakly reciprocally continuous,
� is monotonic non-decreasing, continuous, satisfying condition 2.1 and the following
condition:

d(Ti(x, y, z, t),Tj(u, v,w, s)) ≤ βi, j[d(�(x),Ti(x, y, z, t))+ d(�(u),Tj(u, v,w, s))]
+γi, jd(�(u), �(x))(2.4)

for x, y, z, t, u, v,w, s ∈ X with �(x) � �(u), �(v) � �(y), �(z) � �(w) �(s) � �(t) or
�(x) � �(u), �(v) � �(y), �(z) � �(w), �(s) � �(t). Also 0 ≤ βi, j, γi, j < 0 for i, j ∈ N;
limn→+∞ sup βi,n < 1. Suppose also that there exists (x0, y0, z0, t0) ∈ X4 such that

�(x0) � T0(x0, y0, z0, t0),

�(y0) � T0(y0, z0, t0, x0),

�(z0) � T0(z0, t0, x0, y0)

and
�(t0) � T0(t0, x0, y0, z0).

If Σ+∞i=1
βi,i+1+γi,i+1

1−βi,i+1
is an α−series and �(X) is regular, then {Ti}i∈N and � have a quadrupled

coincidence point, that is, there exists (x, y, z, t) ∈ X4 such that �(x) = Ti(x, y, z, t), �(y) =
Ti(y, z, t, x), �(z) = Ti(z, t, x, y) and �(t) = Ti(t, x, y, z) for i ∈ N.

We consider the sequences {xn}, {yn}, and {zn} constructed above and denote

δn = d(�(xn), �(xn+1) + d(�(yn), �(yn+1)) + d(�(zn), �(zn+1)) + d(�(tn), �(tn+1)).

Then, by 2.4 we get

d(�(x1), �(x2)) = d(T0(x0, y0, z0, t0),T1(x1, y1, z1, t1))
≤ β0,1[d(�(x0),T0(x0, y0, z0, t0)) + d(�(x1),T1(x1, y1, z1, t1))]
+γ0,1d(�(x0), �(x1))

= β0,1[d(�(x0), d(�(x1)) + d(�(x1), d(�(x2))]
+γ0,1d(�(x0), �(x1)).
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It follows that

(1 − β0,1)d(�(x1), �(x2)) ≤ (β0,1 + γ0,1)d(�(x0), �(x1))

or, equivalently,

d(�(x1), �(x2)) ≤
(
β0,1 + γ0,1

1 − β0,1

)
d(�(x0), �(x1)).

Also, one obtains

d(�(x2), �(x3)) ≤
(
β1,2 + γ1,2

1 − β1,2

)
d(�(x1), �(x2))

d(�(x2), �(x3)) ≤
(
β1,2 + γ1,2

1 − β1,2

) (
β0,1 + γ0,1

1 − β0,1

)
d(�(x0), �(x1)).

Repeating the above procedure, we have

d(�(xn), �(xn+1)) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
d(�(x0), �(x1)).(2.5)

Using similar arguments as above, one can also show that

d(�(yn), �(yn+1)) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
d(�(y0), �(y1))(2.6)

d(�(zn), �(zn+1)) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
d(�(z0), �(z1))(2.7)

and

d(�(tn), �(tn+1)) ≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
d(�(t0), �(t1)).(2.8)

Adding 2.5, 2.6,2.7 and 2.8, we have

δn = d(�(xn), �(xn+1)) + d(�(yn), �(yn+1)) + d(�(zn), �(zn+1)) + d(�(tn), �(tn+1))

≤
n−1∏
i=0

(
βi,i+1+γi,i+1

1 − βi,i+1

)
[d(�(x0), �(x1)+d(�(y0), �(y1))+d(�(z0), �(z1))+d(�(t0), �(t1))]

=

n−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
δ0.



672 Animesh Gupta

Moreover, for p > 0 and by repeated use of the triangle inequality, one obtains

d(�(xn), �(xn+p)) + d(�(yn), �(yn+p)) + d(�(zn), �(zn+p)) + d(�(tn), �(tn+p))
≤ d(�(xn), �(xn+1)) + d(�(yn), �(yn+1)) + d(�(zn), �(zn+1)) + d(�(tn), �(tn+1))
+d(�(xn+1), �(xn+2)) + d(�(yn+1), �(yn+2)) + d(�(zn+1), �(zn+2))
+d(�(tn+1), �(tn+2))
· · · + d(�(xn+p−1), �(xn+p)) + d(�(yn+p−1), �(yn+p)) + d(�(zn+p−1), �(zn+p))
+d(�(tn+p−1), �(tn+p))

≤
n−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
δ0 +

n∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
δ0

+ · · ·+
n+p−2∏

i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
δ0

= Σ
p−1
k=0

n+k−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
δ0

= Σ
n+p−1
k=n

k−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)
δ0.

Let α and nα be as in Definition 1.8, then, for n ≥ nα, and using the fact that
the geometric mean of non-negative numbers is less than or equal to the arithmetic
mean, it follows that

d(�(xn), �(xn+p)) + d(�(yn), �(yn+p)) + d(�(zn), �(zn+p)) + d(�(tn), �(tn+p))

≤ Σ
n+p−1
k=n

⎡⎢⎢⎢⎢⎢⎣1
k

k−1∏
i=0

(
βi,i+1 + γi,i+1

1 − βi,i+1

)⎤⎥⎥⎥⎥⎥⎦
k

δ0

≤
(
Σ

n+p−1
k=n αk

)
δ0

≤ αn

1 − αδ0

Now, taking the limit as n→ +∞, one deduces that

lim
n→+∞[d(�(xn), �(xn+p))+d(�(yn), �(yn+p))+d(�(zn), �(zn+p))+d(�(tn), �(tn+p))]=0,

which further implies that

lim
n→+∞ d(�(xn), �(xn+p)) = 0,

lim
n→+∞ d(�(yn), �(yn+p)) = 0,

lim
n→+∞ d(�(zn), �(zn+p)) = 0,

lim
n→+∞ d(�(tn), �(tn+p)) = 0.
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Thus {�(xn)}, {�(yn)}, {�(zn)} and {�(tn)} are Cauchy sequences in X. Since �(X)
is complete, then there exists (x, y, z, t) ∈ X4, with �(x) = x, �(y) = y,�(z) = z and
�(t) = t, such that

lim
n→+∞Tn(xn, yn, zn, tn) = lim

n→+∞ �(xn+1) = x,

lim
n→+∞Tn(yn, zn, tn, xn) = lim

n→+∞ �(yn+1) = y,

lim
n→+∞Tn(zn, tn, xn, yn) = lim

n→+∞ �(zn+1) = z,

lim
n→+∞Tn(tn, xn, yn, zn) = lim

n→+∞ �(tn+1) = t.

Now, as {Ti}i∈N and � are weakly reciprocally continuous, we have

lim
n→+∞ �(Tn(xn, yn, zn, tn)) = �(x),

lim
n→+∞ �(Tn(yn, zn, tn, xn)) = �(y)

lim
n→+∞ �(Tn(zn, tn, xn, yn) = �(z)

and
lim

n→+∞ �(Tn(tn, xn, yn, zn)) = �(z).

On the other hand, the compatibility of {Ti}i∈N and � yields

lim
n→+∞ d(�(Tn(xn, yn, zn, tn)),Tn(�(xn), �(yn), �(zn), �(tn))) = 0,

lim
n→+∞ d(�(Tn(yn, zn, tn, xn)),Tn(�(yn), �(zn), �(tn), �(xn))) = 0,

lim
n→+∞ d(�(Tn(zn, tn, xn, yn)),Tn(�(zn), �(tn), �(xn), �(yn))) = 0,

lim
n→+∞ d(�(Tn(tn, xn, yn, zn)),Tn(�(tn), �(xn), �(yn), �(zn))) = 0.

Then we have

lim
n→+∞Tn(�(xn), �(yn), �(zn), �(tn)) = �(x),(2.9)

lim
n→+∞Tn(�(yn), �(zn), �(tn), �(xn)) = �(y),(2.10)

lim
n→+∞Tn(�(zn), �(tn), �(xn), �(yn)) = �(z),(2.11)

and

lim
n→+∞Tn(�(tn), �(xn), �(yn), �(zn)) = �(t),(2.12)
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Since {�(xn)}and {�(zn)}are non-decreasing also {�(yn)}and {�(tn)}are non-increasing,
using the regularity of X, we have �(xn) � x, y � �(yn), �(zn) � z and t � �(tn) for
all n ≥ 0. Then by 2.4, one obtains

d(Ti(x, y, z, t),Tn(�(xn), �(yn), �(zn), �(tn)))
≤ βi,n[d(�(x),Ti(x, y, z, t))
+d(�(�(xn),Tn(�(xn), �(yn), �(zn), �(tn)))]
+γi,nd(�(�(xn), �(x)).

Taking the limit as n → +∞, we obtain Ti(x, y, z, t) = �(x) as βi,n < 1. Similarly,
it can be proved that �(y) = Ti(y, z, t, x), �(z) = Ti(z, t, x, y) and �(t) = Ti(t, x, y, z).
Thus, (x, y, z, t) is a quadrupled coincidence point of {Ti}i∈N and �.

Now, we give useful conditions for the existence and uniqueness of a quadru-
pled common fixed point.

Theorem 2.2. In addition to the hypotheses of Theorem 2.1, suppose that the set of
coincidence points is comparable with respect to g, then {Ti}i∈N and � have a unique
quadrupled common fixed point, that is, there exists (x, y, z, t) ∈ X4 such that x = �(x) =
Ti(x, y, z, t), y = �(y) = Ti(y, z, t, x), z = �(z) = Ti(z, t, x, y) and t = �(t) = Ti(t, x, y, z) for
i ∈ N.

Proof. From Theorem 2.1, the set of quadrupled coincidence points is non-empty.
Now, we show that if (x, y, z, t) and (u, v,w, s) are quadrupled coincidence points,
that is, if �(x) = Ti(x, y, z, t), �(y) = Ti(y, z, t, x), �(z) = Ti(z, t, x, y), �(t) = Ti(t, x, y, z),
�(u) = Ti(u, v,w, s), �(v) = Ti(v,w, s, u), �(w) = Ti(w, s, u, v) and �(s) = Ti(s, u, v,w)
then �(x) = �(u), �(y) = �(v), �(z) = �(w) and �(t) = �(s). Since the set of coincidence
points is comparable, applying condition 2.4 to these points, we get

d(�(x), �(u)) = d(Ti(x, y, z, t),Tj(u, v,w, s))
≤ βi, j[d(�(x),Ti(x, y, z, t))+ d(�(u),Tj(u, v,w, s))]
+γi, jd(�(x), �(u)),

and so as γi, j < 1, it follows that d(�(x), �(u)) = 0, that is, �(x) = �(u). Similarly, it
can be proved that �(y) = �(v), �(z) = �(w) and �(t) = �(s). Hence, {Ti}i∈N and � have
a unique quadrupled point of coincidence. It is well known that two compatible
mappings are also weakly compatible, that is, they commute at their coincidence
points. Thus, it is clear that {Ti}i∈N and � have a unique quadrupled common fixed
point whenever {Ti}i∈N and � are weakly compatible. This finishes the proof.

If � is the identity mapping, as a consequence of Theorem 2.1, we state the following
corollary.

Corollary 2.1. Let (X, d,�) be a complete partially ordered metric space. Let {Ti}i∈N be a
sequence of mappings from X×X×X into X such that {Ti}i∈N satisfies, for x, y, z, t, u, v,w, s ∈
X with x � u, v � y, z � w s � t or x � u, v � y, z � w, s � t., the following
conditions:
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(i) Tn(x, y, z, t) � Tn+1(u, v,w, s),

(ii) for 0 ≤ βi, j, γi, j < 1 and i, j ∈ N

d(Ti(x, y, z, t),Tj(u, v,w, s)) ≤ βi, j[d(x,Ti(x, y, z, t))+ d(u,Tj(u, v,w, s))]
+γi, jd(u, x).

x0 � T0(x0, y0, z0, t0), y0 � T0(y0, z0, t0, x0),

z0 � T0(z0, t0, x0, y0) and t0 � T0(t0, x0, y0, z0).

If Σ+∞i=1
βi,i+1+γi,i+1

1−βi,i+1
is an α−series and X is regular, then {Ti}i∈N has a quadrupled fixed

point, that is, there exists (x, y, z, t) ∈ X4 such that x = Ti(x, y, z, t), y = Ti(y, z, t, x),
z = Ti(z, t, x, y) and t = Ti(t, x, y, z) for i ∈ N.

Example 2.1. Take X = [0, 1] endowed with usual metric d = |x− y| for all x, y ∈ X and � be
defined as greater than /equal to the (X, d,�) be partial order metric space. Let Ti : X4 → X
be mapping defined as Ti(x, y, z, t) =

x+y+z+t
4i ; i ∈ N and � is self -mapping defined as �(x) = x.

Clearly, Ti(x, y, z, t) ⊆ �(X), �(X) is a complete subset of X.
By choosing the sequences {xn} = 1

n , {yn} = 1
n+1 ,{zn} = 1

n+2 and {tn} = 1
n+3 one can easily

observe that {Ti}i∈N and � are compatible, weakly reciprocally continuous; � is monotonic
nondecreasing, continuous, as well as satisfying condition 2.1.

Again by taking 0 ≤ βi, j, γi, j < 1, it is easy to check inequality 2.4 holds, thus all the hy-
potheses of Theorem 2.1 are satisfied and (0, 0, 0, 0), (1, 1, 1, 1) are the quadrupled coincident
points of � and Ti.Moreover,using the same Ti and � in Theorem 2.2, (0, 0, 0, 0) is the unique
fixed point of � and Ti.

Remark 2.1. Open problem: In this paper, we prove quadrupled fixed point results. The
idea can be extended to multidimensional cases. But the technicalities in the proofs therein
will be different. We consider this as an open problem.
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