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ON COMPARATIVE GROWTH RELATIONSHIP OF ITERATED ENTIRE
FUNCTIONS FROM THE VIEWPOINT OF SLOWLY CHANGING

FUNCTIONS
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Abstract. A positive continuous function L ≡ L (r) is called slow if L (ar) ∼ L (r) as r→ ∞
for every positive constant ‘a’. Lakshminarasimhan [15] introduced the idea of functions
of L-bounded index. Later Lahiri and Bhattacharjee [17] worked on the entire functions
(i.e., functions analytic in the finite complex plane) of L-bounded index and of nonuni-
form L-bounded index. The growth of an entire function f with respect to another entire
function � is defined as the ratio of their maximum moduli for sufficiently large values
of r. The same may be defined in terms of maximum terms as well as Nevanlinna’s
characteristic functions of entire functions. In this paper we would like to investigate
some comparative growth analyses of iterated entire functions (as defined by Lahiri and
Banerjee [16]) on the basis of their maximum terms, maximummoduli and Nevanlinna’s
characteristic functions and obtain some powerful resultswith a scope of further research
in the concerned area.
Keywords: Iterated entire function, maximum term, maximum modulus, Nevanlinna’s
characteristic function, growth, slowly changing function, generalised L∗-order ( gener-
alised L∗-lower order).

1. Introduction.

Let f be an entire function defined in the finite complex plane C. Lahiri and
Banerjee [16]first initiated the theory of iteration of an entire function f with respect
to another entire function � in C in the following way:

f (z) = f1 (z)

f
(
� (z)

)
= f

(
�1 (z)

)
= f2 (z)

f
(
�
(
f (z)

))
= f

(
�
(
f1 (z)

))
= f

(
�2 (z)

)
= f3 (z)
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...... ......... ........... ........

f
(
�
(
f .........

(
f (z) or � (z)

)
..........

))
= fn (z) , according as n is odd or even,

and so

� (z) = �1 (z)

�
(
f (z)

)
= �

(
f1 (z)

)
= �2 (z)

�
(
f
(
� (z)

))
= �

(
f
(
�1 (z)

))
= �

(
f2 (z)

)
= �3 (z)

...... ......... ........... ........

�
(
f
(
�n−2 (z)

))
= �

(
fn−1 (z)

)
= �n (z) .

Clearly all fn (z) and �n (z) are entire functions in C.

We just recall that the the maximum modulus M
(
r, f

)
and maximum term

μ
(
r, f

)
of f =

∞∑
n=0

anzn on |z| = r are respectively defined as M
(
r, f

)
= max
|z|=r

∣∣∣ f (z)∣∣∣
and μ

(
r, f

)
= max

n≥0
(|an| rn). For any two entire functions f and � defined in C, the

growth of f with respect to � can be estimated from the ratios M(r, f )
M(r,�) as r → ∞ and

μ(r, f )
μ(r,�) as r→ ∞. Several researchers like Clunie [5], Singh [25], Song and Yang [23],
Lahiri and Sharma [18], Datta and Biswas {[7],[8]} all studied the growth properties
of entire functions in several directions. Later Banerjee and Datta {[2],[3]} used
the concepts of iteration in the area of the growth properties of entire functions.
Further Banerjee and Datta in [4] investigated the same in the light of maximum
terms of entire functions. But the area still remains virgin to study the scope of
the comparative analysis of growths of iterated entire functions in terms of slowly
changing functions. In fact, the treatment of slowly changing functions in this area
is aweaker supposition rather than others and this is the reason forwhich the study
of growth of iterated entire functions in terms of such a type of functions must lead
to some powerful results in the concerned field. Datta et al. {[9],[10],[11], [13]}
already studied the growths of composite entire functions in the view of slowly
changing functions in several directions and this motivation leads us to further
proceed in the field of iterated entire functions.

2. Definitions and Notations.

In order to study the theory of growth properties of iterated entire functions
in terms of slowly changing functions, it is very much necessary to mention some
relevant definitions and notations. The following notation is frequently used in
this paper:

logk x = log
(
logk−1 x

)
for k = 1, 2, 3, .... and log0 x = x.
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Taking this into account, the growth indicators ρ[
p]
f (respectively λ[

p]
f ) [21] of an

entire function f is defined as

ρ[p]f = lim sup
r→∞

logp M
(
r, f

)
log r

(
respectively λ[p]f = lim inf

r→∞
logp M

(
r, f

)
log r

)
.

For p = 2, the above growth indicator reduces to

ρ f = lim sup
r→∞

log2 M(r, f )
log r

⎛⎜⎜⎜⎜⎝ respectively λ f = lim inf
r→∞

log2 M(r, f )
log r

⎞⎟⎟⎟⎟⎠
which is particularly know as order (respectively lower order) of f . If ρ f < ∞ then
f is of finite order. Also ρ f = 0 means that f is of order zero. In this connection,
Datta and Biswas [6] gave the following definition :

Definition 2.1. [6] Let f be an entire function of order zero. Then the quantities ρ∗∗f and
λ∗∗f of f are defined by:

ρ∗∗f = lim sup
r→∞

logM
(
r, f

)
log r

and λ∗∗f = lim inf
r→∞

logM
(
r, f

)
log r

.

The rate of growth of an entire function generally depends upon order ( lower
order) of it. The entire function with higher order is of faster growth than that of
lesser order. But if orders of two entire functions are same, then it is impossible
to detect the function with faster growth. In that case, it is necessary to compute
another class of growth indicators of entire functions called their types [21]. So the
type σ f of an entire function f is defined as

σ f = lim sup
r→∞

logM
(
r, f

)
rρ f

, 0 < ρ f < ∞ .

Somasundaram and Thamizharasi [24] introduced the notions of L-order and
L-type for entire functions. The more generalised concept for L-order and L-type of
entire functions are L∗-order and L∗-type. Their definitions are as follows:

Definition 2.2. [24] The L∗-order ρL∗f and the L∗-lower order λL∗f of an entire function
f are defined as

ρL
∗
f = lim sup

r→∞
log2 M

(
r, f

)
log

[
reL(r)

] and λL
∗
f = lim inf

r→∞
log2 M

(
r, f

)
log

[
reL(r)

] .
Definition 2.3. The L∗-type σL∗f of an entire function f is defined as

σL
∗
f = lim sup

r→∞
logM

(
r, f

)
[
reL(r)

]ρL∗f , 0 < ρL
∗
f < ∞ .
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In the line of Sato [21] , Datta and Biswas [6] one can define the generalised

L∗-order ρ[p]L
∗

f and generalised L∗-lower order λ[p]L
∗

f of entire f in the following
manner :

Definition 2.4. Let p be an integer ≥ 1. The generalised L∗-order ρ[p]L
∗

f and gener-

alised L∗-lower order λ[p]L
∗

f of an entire function f are defined as

ρ[
p]L∗
f = lim sup

r→∞
logp M

(
r, f

)
log

[
reL(r)

] and λ[
p]L∗
f = lim inf

r→∞
logp M

(
r, f

)
log

[
reL(r)

]
respectively.

Now it is needless to mention the concept of Nevanlinna’s characteristic func-
tion (after the name of Rolf Nevanlinna(1926)) T(r, f ) of entire function f defined

as T
(
r, f

)
= 1

2π

2π∫
0
log+

∣∣∣ f (reiθ)∣∣∣ dθ where log+ x = max
(
log x, 0

)
for all x � 0 which

is very much helpful to carry out the results of this paper. Using the inequalities
μ
(
r, f

) ≤ M
(
r, f

) ≤ R
R−rμ

(
R, f

) {
c f . [26]

}
, for 0 ≤ r < R and T

(
r, f

) ≤ log+M
(
r, f

) ≤
R+r
R−rT

(
R, f

) {
c f . [14]

}
for 0 ≤ r < R < ∞ respectively one may verify that

ρ[
p]L∗
f = lim sup

r→∞
logp μ

(
r, f

)
log

[
reL(r)

] = lim sup
r→∞

logp−1 T
(
r, f

)
log

[
reL(r)

]
and λ[

p]L∗
f = lim inf

r→∞
logp μ

(
r, f

)
log

[
reL(r)

] = lim inf
r→∞

logp−1 T
(
r, f

)
log

[
reL(r)

] .

For further clarification of definitions and notations used in this paper, one may
consult [27].

3. Some Theoretical Results.

In this section we present some lemmas which will be needed in the sequel.

Lemma 3.1. [25] Let f and � be any two entire functions with �(0) = 0. Then for all
sufficiently large values of r,

μ
(
r, f ◦ �) ≥ 1

2
μ
(1
8
μ
( r
4
, �

)
−
∣∣∣�(0)∣∣∣ , f ) .

Lemma 3.2. [5] If f and � are any two entire functions then for all sufficiently large
values of r,

M
(1
8
M

( r
2
, �

)
−
∣∣∣�(0)∣∣∣ , f ) ≤M(r, f ◦ �) ≤M

(
M

(
r, �

)
, f

)
.
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Lemma 3.3. [20] Let f and � be any two entire functions. Then we have

T
(
r, f ◦ �) ≥ 1

3
logM

(1
8
M

( r
4
, �

)
+O(1), f

)
.

Although the following lemmas have already been published in [12],we again
give the proofs of the same here because the techniques employed in the lemmas
have frequently been used in the theorems proved.

Lemma 3.4. [12] Let f and � be any two entire functions such that ρ[
p]L∗
f < ∞ and

ρ[
q]L∗
� < ∞ where p and q are any two positive integers. Then for any ε > 0 and for

all sufficiently large values of r,

logp+( n−2
2 ){(p−1)+(q−1)} μ (r, fn)

≤
(
ρ[

p]L∗
f + ε

) (
logμ

(
βr, �

)
+ L

(
μ
(
r, �

)))
+O(1) when n is even

and

logp+ (n−3)
2 (p−1)+ (n−1)

2 (q−1) μ
(
r, fn

)
≤

(
ρ[

q]L∗
� + ε

) [
logμ

(
βr, f

)
+ L

(
μ
(
r, f

))]
+O(1) when n is odd with n � 1

and β > 1 .

Proof. Let us consider n to be an even number.
Then in view of Lemma 3.2 and the inequality μ

(
r, f

) ≤ M
(
r, f

) ≤ R
R−rμ

(
R, f

){
c f . [26]

}
, for 0 ≤ r < Rwe get for all sufficiently large values of r that

logμ
(
r, fn

) ≤ logM
(
r, fn

)
i.e., logμ

(
r, fn

) ≤ logM
(
M

(
r, �n−1

)
, f

)
i.e., logp μ

(
r, fn

) ≤ logp M
(
M

(
r, �n−1

)
, f

)
i.e., logp μ

(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

)
log

[
M

(
r, �n−1

)
eL(M(r,�n−1))

]

i.e., logp μ
(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

) [
logM

(
r, �n−1

)
+ L

(
M

(
r, �n−1

))]
i.e., logp μ

(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

) [
logM

(
M

(
r, fn−2

)
, �

)
+ L

(
M

(
r, �n−1

))]

i.e., logp μ
(
r, fn

)

≤ logM
(
M

(
r, fn−2

)
, �

)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
ρ[

p]L∗
f + ε

)
+

(
ρ[p]L

∗

f + ε
)
L
(
M

(
r, �n−1

))
logM

(
M

(
r, fn−2

)
, �

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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i.e., logp+(q−1) μ
(
r, fn

) ≤ logq M
(
M

(
r, fn−2

)
, �

)
+O(1)

i.e., logp+(q−1) μ
(
r, fn

)
≤

(
ρ[

q]L∗
� + ε

) [
logM

(
M

(
r, �n−3

)
, f

)
+ L

(
M

(
r, fn−2

))]
+O(1)

...... ......... ........... ........

...... ......... ........... ........

Therefore,

logp+( n−2
2 ){(p−1)+(q−1)} μ (r, fn)

≤
(
ρ[

p]L∗
f + ε

) [
logμ

(
βr, �

)
+ L

(
μ
(
r, �

))]
+O(1) when n is even.

Similarly,

logp+ (n−3)
2 (p−1)+ (n−1)

2 (q−1) μ
(
r, fn

)
≤

(
ρ[

q]L∗
� + ε

) [
logμ

(
βr, f

)
+ L

(
μ
(
r, f

))]
+O(1) when n is odd and n � 1 .

This proves the lemma.

Lemma 3.5. [12] Let f and � be any two entire functions such that ρ[
p]L∗
f < ∞ and

ρ[
q]L∗
� < ∞ where p and q are any two positive integers. Then for any ε > 0 and for

all sufficiently large values of r,

logp+(
n−2
2 ){(p−1)+(q−1)}M (

r, fn
)

≤
(
ρ[

p]L∗
f + ε

) (
logM

(
r, �

)
+ L

(
M

(
r, �

)))
+O(1) when n is even

and

logp+
(n−3)
2 (p−1)+ (n−1)

2 (q−1)M
(
r, fn

)
≤

(
ρ[q]L

∗
� + ε

) [
logM

(
r, f

)
+ L

(
M

(
r, f

))]
+O(1) when n is odd and n � 1 .

We omit the proof of the lemma because it can be carried out in the line of
Lemma 3.4 and with the help of Lemma 3.2.

Similarly, the following lemma can be carried out in the line of Lemma 3.4
and in view of the inequality T

(
r, f

) ≤ log+M
(
r, f

) ≤ R+r
R−rT

(
R, f

) {
c f . [14]

}
for

0 ≤ r < R < ∞ .
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Lemma 3.6. [12] Let f and � be any two entire functions such that ρ[
p]L∗
f < ∞ and

ρ[
q]L∗
� < ∞ where p and q are any two positive integers. Then for any ε > 0 and for

all sufficiently large values of r,

log
n
2 (p−1)+( n−2

2 )(q−1) T
(
r, fn

)
≤

(
ρ[

p]L∗
f + ε

) (
logM

(
r, �

)
+ L

(
M

(
r, �

)))
+O(1) when n is even

and

log
(n−1)
2 {(p−1)+(q−1)} T (

r, fn
)

≤
(
ρ[

q]L∗
� + ε

) [
logM

(
r, f

)
+ L

(
M

(
r, f

))]
+O(1) when n is odd and n � 1 .

We omit the proof of the lemma.

Lemma 3.7. [12] Let f and � be any two entire functions such that 0 < λ[
p]L∗
f < ∞

and 0 < λ[
q]L∗
� < ∞ where p and q are any two positive integers. Then for any

ε
(
0 < ε < min

{
λ[

p]L∗
f , λ[

q]L∗
�

})
and for all sufficiently large values of r,

logp+( n−2
2 ){(p−1)+(q−1)} μ (r, fn)

≥
(
λ[

p]L∗
f − ε

) (
logμ

( r
2n−1
, �

)
+ L

(
μ
( r
2n−1
, �

)))
+O(1)

when n is even

and

logp+ (n−3)
2 (p−1)+ (n−1)

2 (q−1) μ
(
r, fn

)
≥

(
λ[

q]L∗
� − ε

) (
logμ

( r
2n−1
, f

)
+ L

(
μ
( r
2n−1
, f

)))
+O(1)

when n is odd and n � 1 .

Proof. We choose ε in such a way that ε
(
0 < ε < min

{
λ[

p]L∗
f , λ[

q]L∗
�

})
.

Also let us consider n to be an even number .
Now in view of Lemma 3.1 and the inequality μ

(
r, f

) ≤ M
(
r, f

) ≤ R
R−rμ

(
R, f

){
c f . [26]

}
, for 0 ≤ r < Rwe get for all sufficiently large values of r that

μ
(
r, fn

)
= μ

(
r, f ◦ �n−1)

i.e., μ
(
r, fn

) ≥ 1
2
μ
( 1
16
μ
( r
2
, �n−1

)
, f

)

i.e., logp μ
(
r, fn

) ≥ logp μ
( 1
16
μ
( r
2
, �n−1

)
, f

)
+O(1)



146 Kailash C. Patidar, Sanjib Kumar Datta, Tanmay Biswas and Chinmay Biswas

i.e., logp μ
(
r, fn

) ≥ (
λ[

p]L∗
f − ε

)
log

[( 1
16
μ
( r
2
, �n−1

))
eL(

1
16μ( r

2 ,�n−1))
]

+O(1)

i.e., logp μ
(
r, fn

) ≥ (
λ[

p]L∗
f − ε

) [
logμ

( r
2
, �n−1

)
+ L

(
μ
( r
2
, �n−1

))]
+O(1)

i.e., logp μ
(
r, fn

)
≥

(
λ[

p]L∗
f − ε

) [
logμ

( 1
16
μ
( r
22
, fn−2

)
+O(1), �

)
+ L

(
μ
( r
2
, �n−1

))]
+O(1)

i.e., logp μ
(
r, fn

)

≥ logμ
( 1
16
μ
( r
22
, fn−2

)
, �

) ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
λ[

p]L∗
f − ε

)
+

(
λ[

p]L∗
f − ε

)
L
(
μ
(
r
2 , �n−1

))
+O(1)

logμ
(
1
16μ

(
r
22 , fn−2

)
, �

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i.e., logp+(q−1) μ
(
r, fn

) ≥ logq μ
( 1
16
μ
( r
22
, fn−2

)
, �

)
+O(1)

i.e., logp+(q−1) μ
(
r, fn

) ≥ (
λ[

q]L∗
� − ε

)
log

{( 1
16
μ
( r
22
, fn−2

))
eL

(
μ
(

r
22
, fn−2

))}
+O(1)

i.e., logp+(q−1) μ
(
r, fn

) ≥ (
λ
[q]L∗
� − ε

) [
logμ

( r
22
, fn−2

)
+ L

(
μ
( r
22
, fn−2

))]

...... ......... ........... ........

...... ......... ........... ........

Therefore

logp+(
n−2
2 ){(p−1)+(q−1)} μ (r, fn)

≥
(
λ[

p]L∗
f − ε

) [
logμ

( r
2n−1
, �

)
+ L

(
μ
( r
2n−1
, �

))]
when n is even .

Similarly,

logp+
(n−3)
2 (p−1)+ (n−1)

2 (q−1) μ
(
r, fn

)
≥

(
λ[

q]L∗
� − ε

) [
logμ

( r
2n−1
, f

)
+ L

(
μ
( r
2n−1
, f

))]
when n is odd and n � 1 .

Thus the lemma follows.



On Comparative Growth Relationship... 147

Lemma 3.8. [12] Let f and � be any two entire functions such that 0 < λ[
p]L∗
f < ∞

and 0 < λ[
q]L∗
� < ∞ where p and q are any two positive integers. Then for any

ε
(
0 < ε < min

{
λ[

p]L∗
f , λ[

q]L∗
�

})
and for all sufficiently large values of r,

logp+(
n−2
2 ){(p−1)+(q−1)}M (

r, fn
)

≥
(
λ[

p]L∗
f − ε

) (
logM

( r
2n−1
, �

)
+ L

(
M

( r
2n−1
, �

)))
+O(1)

when n is even

and

logp+
(n−3)
2 (p−1)+ (n−1)

2 (q−1)M
(
r, fn

)
≥

(
λ[

q]L∗
� − ε

) (
logM

( r
2n−1
, f

)
+ L

(
M

( r
2n−1
, f

)))
+O(1)

when n is odd and n � 1 .

We omit the proof of the lemma because it can be carried out in the line of
Lemma 3.7 and with the help of Lemma 3.2.

Similarly the following lemma can be carried out in the line of Lemma 3.7 and
in view of Lemma 3.3.

Lemma 3.9. [12] Let f and � be any two entire functions such that 0 < λ[
p]L∗
f < ∞

and 0 < λ[
q]L∗
� < ∞ where p and q are any two positive integers. Then for any

ε
(
0 < ε < min

{
λ[p]L

∗

f , λ[q]L
∗

�

})
and for all sufficiently large values of r,

log
n
2 (p−1)+( n−2

2 )(q−1) T
(
r, fn

)
≥

(
λ[

p]L∗
f − ε

) (
logM

( r
4n−1
, �

)
+ L

(
M

( r
4n−1
, �

)))
+O(1)

when n is even

and

log
(n−1)
2 {(p−1)+(q−1)} T (

r, fn
)

≥
(
λ[

q]L∗
� − ε

) (
logM

( r
4n−1
, f

)
+ L

(
M

( r
4n−1
, f

)))
+O(1)

when n is odd and n � 1 .

The proof is omitted.
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4. Main Results.

In this section we present the main results of the paper.

Theorem 4.1. Let f and � be any two entire functions such that ρ[
p]L∗
f and ρL

∗
� are both

finite and positive where p ≥ 1.Then for each α ∈ (−∞,∞) and for any even n,

lim inf
r→∞

{
log

np
2 μ

(
r, fn

)}1+α
logp μ

(
exp (rβ) , f

) = 0 and

lim inf
r→∞

{
log

np
2 μ

(
r, fn

)}1+α
log2 μ

(
exp (rβ) , �

) = 0 where β > (1 + α) ρL
∗
� .

Proof. If 1 + α < 0, then the theorem is trivial. So we take 1 + α > 0. Now in view
of Lemma 3.4,we have for all sufficiently large values of r that

log
np
2 μ

(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

) (
logμ

(
βr, �

)
+ L

(
μ
(
r, �

)))
+O(1)

log
np
2 μ

(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

) [
βreL(r)

](ρL∗� +ε)
+
(
ρ[

p]L∗
f +ε

)
L
(
μ
(
r, �

))
+O(1)

i.e.,

{
log

np
2 μ

(
r, fn

)}1+α

≤
[[
reL(r)

](ρL∗� +ε) (
ρ[

p]L∗
f + ε

)
+
(
ρ[

p]L∗
f + ε

)
L
(
μ
(
r, �

))
+O(1)

]1+α
.(4.1)

Again we have for a sequence of r tending to infinity and for ε(> 0) that

logp μ
(
exp

(
rβ
)
, f

)
≥

(
ρ[

p]L∗
f − ε

)
log

[
exp

(
rβ
)
exp

{
L
(
exp

(
rβ
))}]

(4.2) i.e., logp μ
(
exp

(
rβ
))
, f ) ≥

(
ρ[

p]L∗
f − ε

) [
rβ + L

(
exp

(
rβ
))]
.

So from (4.1) and (4.2), we get for a sequence of r tending to infinity that

{
log

np
2 μ

(
r, fn

)}1+α
logp μ

(
exp (rβ) , f

)
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(4.3) ≤

[[
reL(r)

](ρL∗� +ε) (
ρ[

p]L∗
f + ε

)
+
(
ρ[

p]L∗
f + ε

)
L
(
μ
(
r, �

))
+O(1)

]1+α
(
ρ[

p]L∗
f − ε

) [
rβ + L

(
exp (rβ)

)] .

Let

[
eL(r)

](ρL∗� +ε) (
ρ[

p]L∗
f + ε

)
= k1,

(
ρ[

p]L∗
f + ε

)
L
(
μ
(
r, �

))
= k2,(

ρ[
p]L∗
f − ε

)
= k3,

(
ρ[

p]L∗
f − ε

)
L
(
exp

(
rβ
))
= k4.

Then from (4.3) we obtain for a sequence of r tending to infinity that

{
log

np
2 μ

(
r, fn

)}1+α
logp μ

(
exp (rβ) , f

) ≤
[
r(ρ

L∗
� +ε)k1 + k2 +O(1)

]1+α
k3rβ + k4

i.e.,

{
log

np
2 μ

(
r, fn

)}1+α
logp μ

(
exp (rβ) , f

) ≤
r(ρ

L∗
� +ε)(1+α)

[
k1 +

k2+O(1)

r(ρL
∗
� +ε)

]1+α
k3rβ + k4

where k1, k2,k3 and k4 are finite.
Since

(
ρL
∗
� + ε

)
(1 + α) < β, one can verify

lim inf
r→∞

{
log

np
2 μ

(
r, fn

)}1+α
logp μ

(
exp (rβ) , f

) = 0

where we choose ε(> 0) such that

0 < ε < min
{
ρ[

p]L∗
f ,

β

1 + α
− ρL∗�

}
,

which proves the first part of the theorem.
Similarly, the second part of the theorem follows from the following inequality in
place of (4.2)

i.e., log2 μ
(
exp

(
rβ
))
, �) ≥

(
ρL
∗
� − ε

) [
rβ + L

(
exp

(
rβ
))]

for a sequence of r tending to infinity.
This proves the theorem.

Remark 4.1. In view of Lemma 3.5 and under the same conditions, Theorem 4.1 is still
valid with M

(
r, fn

)
, M

(
exp

(
rβ
)
, f

)
and M

(
exp

(
rβ
)
, �
)
as respetively replaced by μ

(
r, fn

)
,

μ
(
exp

(
rβ
)
, f

)
and μ

(
exp

(
rβ
)
, �
)
.
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Remark 4.2. Using Lemma 3.6 and the conditions of Theorem 4.1, one may easily deduce
the followings

lim inf
r→∞

{
log

np−2
2 T

(
r, fn

)}1+α
logp−1 T

(
exp (rβ) , f

) = 0

and lim inf
r→∞

{
log

np−2
2 T

(
r, fn

)}1+α
logT

(
exp (rβ) , �

) = 0 where β > (1 + α)ρL
∗
� .

Remark 4.3. In Theorem 4.1, Remark 4.1 and Remark 4.2 if we take the condition “ 0 <

λ[
p]L∗
f ≤ ρ[p]L∗f < ∞ and 0 < λL∗� ≤ ρL∗� < ∞ ” in place of “ ρ[

p]L∗
f and ρL∗� are both finite and

positive ” the theorem remains true with “lim” replaced by “lim inf”.

The following theorem can be carried out in the line of Theorem 4.1 and with
the help of Lemma 3.4. Therefore its proof is omitted.

Theorem 4.2. Let f and � be any two entire functions with ρL
∗
f and ρ[

q]L∗
� are both finite

and positive where q ≥ 1.Then for each α ∈ (−∞,∞) and for any odd n (� 1) ,

lim inf
r→∞

{
log

nq−q+2
2 μ

(
r, fn

)}1+α
log2 μ

(
exp (rβ) , f

) = 0 and

lim inf
r→∞

{
log

nq−q+2
2 μ

(
r, fn

)}1+α
logq μ

(
exp (rβ) , �

) = 0 where β > (1 + α) ρL
∗
f .

Remark 4.4. In view of Lemma 3.5 under the same conditions, Theorem 4.2 remains
true with M

(
r, fn

)
, M

(
exp

(
rβ
)
, f

)
and M

(
exp

(
rβ
)
, �
)
as respetively replaced by μ

(
r, fn

)
,

μ
(
exp

(
rβ
)
, f

)
and μ

(
exp

(
rβ
)
, �
)
.

Remark 4.5. Using Lemma 3.6 and the conditions of Theorem 4.2 one may easily compute
the followings

lim inf
r→∞

{
log

q(n−1)
2 T

(
r, fn

)}1+α
logT

(
exp (rβ) , f

) = 0 and

lim inf
r→∞

{
log

q(n−1)
2 T

(
r, fn

)}1+α

log[q−1] T
(
exp (rβ) , �

) = 0 where β > (1 + α) ρL
∗
f .

Remark 4.6. In Theorem 4.1, Remark 4.1 and Remark 4.2 if we take the condition “ 0 <
λL
∗
f ≤ ρL

∗
f < ∞ and 0 < λ[

q]L∗
� ≤ ρ[q]L∗� < ∞ ” in place of “ ρL∗f and ρ[

q]L∗
� are both finite and

positive ” the theorem remains true with “lim” replaced by “lim inf”.
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Theorem 4.3. Let f and � be any two entire functions such that 0 < λ[
p]L∗
f ≤ ρ[p]L∗f < ∞

where p is any positive integer and 0 < λL
∗
� ≤ ρL∗� < ∞ . Then for any even number n,

lim sup
r→∞

log
np+2
2 μ

(
r, fn

)
logp μ

(
r, f

)
+ L

(
μ
(

r
2n−1 , �

)) ≥ ρL
∗
�

ρ[
p]L∗
f

.

Proof. In view of Lemma 3.7, we have for all sufficiently large values of r that

log
np
2 μ

(
r, fn

) ≥ (
λ[

p]L∗
f − ε

) (
logμ

( r
2n−1
, �

)
+ L

(
μ
( r
2n−1
, �

)))
+O(1)

which implies

log
np
2 μ

(
r, fn

) ≥ (
λ[

p]L∗
f − ε

)
logμ

( r
2n−1
, �

)
.

⎧⎪⎪⎨⎪⎪⎩
L
(
μ
(

r
2n−1 , �

))
+O(1)

logμ
(

r
2n−1 , �

)
⎫⎪⎪⎬⎪⎪⎭

and further

log
np+2
2 μ

(
r, fn

) ≥ log2 μ
( r
2n−1
, �

)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
λL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ L
(
μ
( r
2n−1
, �

))

− log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣exp
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
λL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ L
(
μ
( r
2n−1
, �

))⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ log

⎧⎪⎪⎨⎪⎪⎩
L
(
μ
(

r
2n−1 , �

))
+O(1)

logμ
(

r
2n−1 , �

)
⎫⎪⎪⎬⎪⎪⎭

i.e.,

log
np+2
2 μ

(
r, fn

) ≥ log2 μ
( r
2n−1
, �

)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
λL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ L
(
μ
( r
2n−1
, �

))

+ log

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
L
(
μ
(

r
2n−1 , �

))
+O(1)

exp
{(

λL
∗
� −ε

ρ
[p]L∗
f +ε

)
L
(
μ
(

r
2n−1 , �

))}
logμ

(
r

2n−1 , �
)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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Finally

log
np+2
2 μ

(
r, fn

) ≥ log2 μ
( r
2n−1
, �

)
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
λL
∗
� − ε

ρ[p]L
∗

f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ L
(
μ
( r
2n−1
, �

))
.(4.4)

Now from (4.4) it follows for a sequence of values of r tending to infinity that

log
np+2
2 μ

(
r, fn

) ≥ (
ρL
∗
� − ε

)
log

{ r
2n−1

eL(r)
}

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ L
(
μ
( r
2n−1
, �

))
.

Now we get for all sufficiently large values of r that

logp μ
(
r, f

) ≤
(
ρ[

p]L∗
f + ε

)
log

{
reL(r)

}

i.e., logp μ
(
r, f

) ≤
(
ρ[

p]L∗
f + ε

)
log

{ r
2n−1

eL(r)
}
+ log 2n−1.(4.5)

Hence from (4.) and (4.5) , it follows for all sufficiently large values of r that

log
np+2
2 μ

(
r, fn

) ≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
logp μ

(
r, f

) − log 2n−1
)

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρL
∗
� − ε

ρ[p]L
∗

f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ L
(
μ
( r
2n−1
, �

))

i.e.,

log
np+2
2 μ

(
r, fn

) ≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
[
logp μ

(
r, f

)
+ L

(
μ
( r
2n−1
, �

))]

−
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ log 2n−1

i.e.,
log

np+2
2 μ

(
r, fn

)
logp μ

(
r, f

)
+ L

(
μ
(

r
2n−1 , �

))

≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρL
∗
� − ε

ρ[
p]L∗
f + ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
(
ρL
∗
� −ε

ρ
[p]L∗
f +ε

)
log 2n−1

logp μ
(
r, f

)
+ L

(
μ
(

r
2n−1 , �

)) .(4.6)
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Since ε (> 0) is arbitrary, it follows from (4.6) that

lim sup
r→∞

log
np+2
2 μ

(
r, fn

)
logp μ

(
r, f

)
+ L

(
μ
(

r
2n−1 , �

)) ≥ ρL
∗
�

ρ[
p]L∗
f

.

This proves the theorem.

In the line of Theorem 4.3, the following theorem can be proved:

Theorem 4.4. Let f and � be any two entire functions with 0 < λ[
p]L∗
f ≤ ρ[p]L∗f < ∞

where p ≥ 1 and 0 < λL
∗
� ≤ ρL∗� < ∞. Then for any even number n,

lim inf
r→∞

log
np+2
2 μ

(
r, fn

)
logp μ

(
r, f

)
+ L

(
μ
(

r
2n−1 , �

)) ≥ λL
∗
�

ρ[
p]L∗
f

.

The proof is omitted.

Remark 4.7. In view of Lemma 3.8 and under the same conditions , Theorem 4.3 and
Theorem 4.4 are still valid with maximum moduli as replaced by maximum terms.

Remark 4.8. FollowingTheorem4.3andTheorem4.4 and also usingLemma3.9 and inview
of the inequality T

(
r, f

) ≤ log+M
(
r, f

) {
c f . [14]

}
one may respectively obtain the followings

conclusions :

limsup
r→∞

log
np
2 T

(
r, fn

)
logp−1 T

(
r, f

)
+ L

(
exp

{
T
(

r
4n−1 , �

)}) ≥ ρL
∗
�

ρ[
p]L∗
f

and

lim inf
r→∞

log
np
2 T

(
r, fn

)
logp−1 T

(
r, f

)
+ L

(
exp

{
T
(

r
4n−1 , �

)}) ≥ λL
∗
�

ρ[
p]L∗
f

.

In the line of Theorem 4.3 and Theorem 4.4, we may state the following two
theorems without their proofs :

Theorem 4.5. Let f and � be any two entire functions such that 0 < λL
∗
f ≤ ρL

∗
f < ∞ and

0 < λ[
q]L∗
� ≤ ρ[q]L∗� < ∞where q is any positive integer . Then for any odd number n (� 1) ,

lim sup
r→∞

log
q(n−1)+4

2 μ
(
r, fn

)
logq μ

(
r, �

)
+ L

(
μ
(

r
2n−1 , f

)) ≥ ρL
∗
f

ρ[
q]L∗
�

.
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Theorem 4.6. Let f and � be any two entire functions with 0 < λL
∗
f ≤ ρL

∗
f < ∞ and

0 < λ[
q]L∗
� ≤ ρ[q]L∗� < ∞ where q ≥ 1. Then for any odd number n (� 1) ,

lim inf
r→∞

log
q(n−1)+4

2 μ
(
r, fn

)
logq μ

(
r, �

)
+ L

(
μ
(

r
2n−1 , f

)) ≥ λL
∗
f

ρ[q]L
∗

�

.

Replacingmaximum terms bymaximummodulus in Theorem4.5 andTheorem
4.6, we may obtain the following two remarks:

Remark 4.9. For any two entire functions f and � with 0 < λL∗f ≤ ρL
∗
f < ∞ and 0 < λ[

q]L∗
� ≤

ρ[
q]L∗
� < ∞ where q is any positive integer. Then for any odd number n (� 1) ,

lim sup
r→∞

log
q(n−1)+4

2 M
(
r, fn

)
logq M

(
r, �

)
+ L

(
M

(
r

2n−1 , f
)) ≥ ρL

∗
f

ρ[
q]L∗
�

.

Remark 4.10. If f and � be any two entire functions with 0 < λL∗f ≤ ρL
∗
f <∞ and 0 < λ[

q]L∗
� ≤

ρ[
q]L∗
� < ∞ where q ≥ 1. Then for any odd number n (� 1) ,

lim inf
r→∞

log
q(n−1)+4

2 M
(
r, fn

)
logq M

(
r, �

)
+ L

(
M

(
r

2n−1 , f
)) ≥ λL

∗
f

ρ[
q]L∗
�

.

Remark 4.11. Under the same conditions, Remark 4.9 and Remark 4.10 must be valid
with Nevanlinna’s characteristic function ( taking into account the necessary changes of
successive logarithms both in numerators and denominators of the ratios) as replaced by
maximummoduli.

Theorem 4.7. Let f and � be any two entire functions such that 0 < ρ[
p]L∗
f < ∞ where

p ≥ 1 and σL
∗
� < ∞. Then for any β > 1 and for any even number n,

(a) if L
(
μ
(
βr, �

))
= o

{
logμ

(
r, �

)}
then

lim inf
r→∞

log
np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤ β2ρL∗� .ρ[p]L∗f

and (b) if logμ
(
r, �

)
= o

{
L
(
μ
(
βr, �

))}
then

log
np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤ ρ[p]L∗f .

Proof. In view of Lemma 3.4 and the inequality μ
(
r, f

) ≤ M
(
r, f

) {
c f . [26]

}
we get

for all sufficiently large values of r that

(4.7) Log
np
2 μ

(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

) {
LogM

(
βr, �

)
+ L

(
μ
(
βr, �

))}
+O(1).



On Comparative Growth Relationship... 155

Using the definition of L∗-type, we obtain from (4.7) for all sufficiently large values
of r that

(4.8)
log

np
2 μ

(
r, fn

) ≤ (
ρ[

p]L∗
f + ε

) (
σL
∗
� + ε

) {
βreL(r)

}ρL∗�
+
(
ρ[

p]L∗
f + ε

)
L
(
μ
(
βr, �

))
+O(1) .

Again from the definition of L∗-type and taking R = βr the inequality M
(
r, f

) ≤
R

R−rμ
(
R, f

) {
c f . [26]

}
,we get for a sequence of values of r tending to infinity that

(4.9)

logμ
(
r, �

) ≥ logM
(
r
β
, �

)
+O(1)

≥
(
σL
∗
� − ε

) {( r
β

)
eL

(
r
β

)}ρL∗�
+O(1)

i.e.,
{
βreL(r)

}ρL∗� ≤ β2ρL∗� logμ
(
r, �

)
(
σL
∗
� − ε

) .
Now from (4.8) and (4.9) , it follows for a sequence of values of r tending to infinity
that

log
np
2 μ

(
r, fn

) ≤ β2ρ
L∗
� .

(
ρ[

p]L∗
f + ε

) (
σL
∗
� + ε

) logμ (r, �)(
σL
∗
� − ε

)
+
(
ρ[

p]L∗
f + ε

)
L
(
μ
(
βr, �

))
+O(1)

i.e.,

(4.10)
log

np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤
β
2ρL
∗
� .

(
ρ[p]L

∗
f +ε

)
(σL∗� +ε)

(σL∗� −ε)

1 +
L(μ(βr,�))
logμ(r,�)

+

(
ρ[

p]L∗
f + ε

)

1 +
logμ(r,�)
L(μ(βr,�))

.

If L
(
μ
(
βr, �

))
= o

{
logμ

(
r, �

)}
then from (4.10) we get that

lim inf
r→∞

log
np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤ β
2ρL

∗
� .

(
ρ[

p]L∗
f + ε

) (
σL
∗
� + ε

)
(
σL
∗
� − ε

) .

Since ε (> 0) is arbitrary, it follows from above that

lim inf
r→∞

log
np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤ β2ρL∗� .ρ[p]L∗f .

Thus the first part of the theorem follows.
Again if logμ

(
r, �

)
= o

{
L
(
μ
(
βr, �

))}
then from (4.10) it follows that

lim inf
r→∞

log
np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤ (
ρ[

p]L∗
f + ε

)
.
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As ε (> 0) is arbitrary, we obtain from above that

lim inf
r→∞

log
np
2 μ

(
r, fn

)
logμ

(
r, �

)
+ L

(
μ
(
βr, �

)) ≤ ρ[p]L∗f ,

which is the second part of the theorem. Thus the theorem is established.

The following theorem can be carried out in the line of Theorem 4.7 and with
the help of Lemma 3.4. Therefore its proof is omitted.

Theorem 4.8. Let f and � be any two entire functions with 0 < ρ[
q]L∗
� < ∞ where q ≥ 1

and σL
∗
f < ∞. Then for any β > 1 and any odd number n except 1,

(a) if L
(
μ
(
βr, f

))
= o

{
logμ

(
r, f

)}
then

lim inf
r→∞

log
q(n−1)+2

2 μ
(
r, fn

)
logμ

(
r, f

)
+ L

(
μ
(
βr, f

)) ≤ β2ρL∗f · ρ[q]L∗�

and (b) if logμ
(
r, f

)
= o

{
L
(
μ
(
βr, f

))}
then

log
q(n−1)+2

2 μ
(
r, fn

)
logμ

(
r, f

)
+ L

(
μ
(
βr, f

)) ≤ ρ[q]L∗� .

Remark 4.12. In view of Lemma 3.5 and under the same conditions, Theorem 4.7 and
Theorem4.8 still standwithM

(
r, fn

)
,M

(
r, �

)
andM

(
r, f

)
respectively as changed by μ

(
r, fn

)
,

μ
(
r, �

)
and μ

(
r, f

)
.

Remark 4.13. Using Lemma 3.6 and the conditions of Theorem 4.7, one may easily deduce
the followings:
(a) if L

(
exp

{
β+1
β−1T

(
βr, �

)})
= o

{
logM

(
r, �

)}
then

lim inf
r→∞

log
np−2
2 T

(
r, fn

)
T
(
r, �

)
+ L

(
exp

{
β+1
β−1T

(
βr, �

)}) ≤ ρ[p]L∗f

and (b) if logM
(
r, �

)
= o

{
L exp

{
β+1
β−1T

(
βr, �

)}}
then

log
np−2
2 T

(
r, fn

)
T
(
r, �

)
+ L

(
exp

{
β+1
β−1T

(
βr, �

)}) ≤ ρ[p]L∗f .

Remark 4.14. In view of Lemma 3.6 and using the conditions of Theorem 4.8, the following
conclusions may be obtained:
(a) if L

(
exp

{
β+1
β−1T

(
βr, f

)})
= o

{
logM

(
r, f

)}
then

lim inf
r→∞

log
q(n−1)

2 T
(
r, fn

)
T
(
r, f

)
+ L

(
exp

{
β+1
β−1T

(
βr, f

)}) ≤ ρ[q]L∗�
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and (b) if logM
(
r, f

)
= o

{
L exp

{
β+1
β−1T

(
βr, f

)}}
then

log
q(n−1)

2 T
(
r, fn

)
T
(
r, f

)
+ L

(
exp

{
β+1
β−1T

(
βr, f

)}) ≤ ρ[q]L∗� .

5. Concluding Remarks and Scope for Further Research.

Different growth indicators of entire f in terms of slowly changing functions
have frequently been used in this paper just taking into consideration a comparison
with the exp function. But cases may be risen out if one is interested in finding
out what are the applications of growth indicators of an entire function f with
respect to an arbitrary entire function �. Keeping this in mind, the notion of
relative order ( respectively relative lower order) as initiated by L. Bernal [1] may be a
further scope of penetration in the field of the growth of iterated entire functions
in view of slowly changing functions. Still it remains open to the researchers
of this branch to investigate such a type of results in the light of relative (p,q) th
order (respectively relative (p,q)-th lower order) with any two positive integers p, q as
introduced by Sánchez Ruiz et al. [19] and also relative proximate order (respectively
relative proximate lower order) in order to obtain sharper estimations of the same.
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