Pankaj Pandey, Kamakshi Sharma

DOI Number
First page
Last page


The objective of this paper is to study the nature of Ricci soliton admitting various type of contact metric manifolds such as Kenmostu manifold, LP Sasakian manifold and LCS manifold. In this paper, it is proved that a Kemnotsu Ricci soliton is expanding, whereas the LP-Sasakian Ricci soliton is shrinking. Further, the conditions have been obtained on $(LCS)_{n}$ Ricci soliton to be expanding, shrinking and steady and the results are verified by suitable examples. It is also proved that the possible values of soliton constant is the set of all even integers $\ZZ^{2n}$ and the set of negative integres $\ZZ^{-}$ respectively for Kenmostu Ricci soliton and LP Sasakian Ricci Soliton and if the (LCS) Ricci soliton is expanding then soliton constant lies on the interval $(0, \infty)$ and for shrinking it lies on $(-\infty, 0)$. The Projectively flat cases for the above manifolds are also discussed to be expanding, shrinking and steady. Finally, we study these Ricci solitons admitting Ricci semi-symmetric condition $R.S=0$ and prove that the soliton constant $\lambda$ is an eigen value of metric tensor $g$ with respect to associated vector field $\xi$.


Ricci soliton, Contant metric manifolds, Kenmostu manifold.

Full Text:



Z. Ahsan: Ricci Solitons and the Spacetime of General Relativity, J.T.S., 12 (2018), 49–64.

M. Ali, and Z. Ahsan: Ricci Solitons and symmetries of spacetime manifold of general

relativity, Global Journal of Advanced Research on Classical and Modern Geometries, 2, (2014), 75–84.

B.B. Chaturvedi and P. Pandey: Study on special type of a weakly symmetric Kahler

manifold, Diffenetial Geometry-Dynamical System, 17, (2015), 32-37.

B.B. Chaturvedi and P. Pandey: Some Examples on Weak Symmetries, General Mathematics Notes, 29, (2015), 61–66.

S.K. Chaubey and U.C. De Three-Dimensional Riemannian Manifolds and Ricci Solitons, Quaestiones Mathematicae, (2021) DOI:10.2989/16073606.2021.1895352.

K. De, U.C. De, A.A. Syied, N.B. Turki and S. Alsaeed: Perfect Fluid Spacetimes

and Gradient Solitons, Journal of Nonlinear Mathematical Physics, (2022), DOI:10.1007/s44198-022-00066-5.

U.C. De, C.A. Mantica, and Y. Suh: Perfect fluid spacetimes and gradient solitons, Filomat, 36(3), (2022), 829–842.

U.C. De, A. Sardar and K. De: Ricci-Yamabe solitons and 3-dimensional Riemannian manifolds, Turkish Journal of Mathematics, 46(3), (2022), 1078–1088.

U.C. De and A.A. Shaikh: Differential Geometry of Manifolds, Narosa Publishing House (2007).

R.S. Hamilton: Three-manifolds with positive Ricci curvature, Journal of Differential Geometry, 17, (1982), 255–306.

A. Haseeb and S.K. Choubey: Lorentzian Para Sasakian Manifolds and *Ricci Solitons, Kragujevac Journal of Mathematics, (2021), 167-–179.

S.K. Hui, R.S. Lemence and D. Chakraborty: Ricci Solitons on Ricci Pseudosymmetric (LCS)n-Manifolds, [math.DG] (2017).

S.K. Hui, S.K. Yadav and A. Patra: Almost Conformal Ricci Solitons on f-Kenmotsu Manifolds, Khayyam J. Math. , 5(1), (2019), 89–104.

Y.C. Mandal and S.K. Hui: Yamabe Solitons with potential vector field as torse

forming, CUBO A Mathematical Journal, 20 (2018), 37–47.

K. Matsumoto: On Lorentzian paracontact manifolds, Bull. of Yamagata Univ.,

Nat. Sci. 12 , (1989), 151–156.

K. Matsumoto and I. Mihai: On a certain transformation in a Lorentzian para

Sasakian manifold, Tensor, N.S. 47, (1988), 189–197.

I. Mihai and R. Rosca: On Lorentzian P-Sasakian manifolds, Classical Analysis,

World Scientific Publi., (1992), 159–169.

H.G. Nagaraja and K. Venu: Ricci Solitons in Kenmotsu Manifold, Journal of

Informatics and Mathematical Sciences, 8(1), (2016), 29–36.

P. Pandey: On Weakly Cyclic Generalized Z-Symmetric Manifolds, Natl. Acad.

Sci. Lett., 43, (2020), 347–350.

P. Pandey and B.B. Chaturvedi On a Lorentzian Complex Space Form, Natl.

Acad. Sci. Lett., 43, (2020), 351–353.

G.P. Pokhariyal: Study of a new curvature tensor in a Sasakian manifold, Tensor

N.S. 36(2), (1982), 222–226.

G.P. Pokhariyal and R. S. Mishra: Curvature tensors and their relativistics

significance, Yokohama Mathematical Journal, 18 (1970), 105–108.

S. Roy, S. Dey and A. Bhattacharya: Yambe Solitons on (LCS)n-manifolds,

arXiv:1909.06551v1 [math.DG] (2019).

B. Shanmukha and V. Venkatesha: Some Ricci solitons on Kenmotsu manifold,

The Journal of Analysis, (2020).

A. Sardar, U.C. De and B. Nazafi: 3-Dimensional f -Kenmotsu Manifolds And

Solitons, International Journal of Geometric Methods in Modern Physics,

(2022), doi:10.1142/S0219887822501997.

A.A. Shaikh: On Lorentzian almost paracontact manifolds with a structure of the

concircular type, Kyungpook Math.Journal, 43, (2003), 305-314.

A.A. Shaikh: Some Results On (LCS)n Manifolds, Journal of Korean Mathematical

Society, 46, (2009), 449-461.

A.A. Shaikh and S. Biswas: On LP-Sasakian manifolds, Bull. Malaysian Math.

Sc. Soc. (Second Series), 27, (2004), 17–26.

A.A. Shaikh and S.K. Hui: On extended generalized ϕ-recurrent and β-Kenmotsu

manifold, Publ. De L’ Inst. Math., (2010), 89(103), 77-88.

M.D. Siddiqi and U.C. De: Relativistic perfect fluid spacetimes and Ricci–Yamabe

solitons, Letters in Mathematical Physics, 112(1), (2022), DOI: 10.1007/s11005-


A. Singh, R.K. Pandey, A. Prakash and K. Sachin: On a Pseudo Projective

ϕ- Recurrent Sasakian Manifolds, Journal of mathematics and computer science,

, (2015), 309–314.

Venkatesha, C.S. Bagewadi and K.T. Pradeep Kumar: Some Results on

Lorentzian Para-Sasakian Manifolds, International Scholarly Research Network

ISRN Geometry (2011), Doi: 10.5402/2011/161523.

K. Yano and S. Sawaki: Riemannian manifolds admitting a conformal transformation

group, Journal of Differential Geometry, 2, (1968), 161–184.

A. Yıldız and U.C. De: On a type of Kenmotsu manifolds, Differential Geometry—

Dynamical Systems, 12 (2010), 289-298.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)