### A COMMON FIXED POINT THEOREM FOR WEAKLY SUBSEQUENTIALLY CONTINUOUS MAPPINGS SATISFYING IMPLICIT RELATION IN MENGER SPACES

**DOI Number**

**First page**

**Last page**

#### Abstract

The aim of this paper is to prove a common fixed point theorems for two

weakly subsequentially continuous and compatible of type (E) pairs of self mappings

which satisfying implicit relation in Meneger spaces, an example is given to illustrate

our results, our results improve and generalize some previous results.

#### Keywords

#### Full Text:

PDF#### References

M. Aamri and D. El Moutawakil,Some new common xed point theorems under strict

contractive conditions, Math. Anal. Appl, 270, (2002) 181-188.

J.Ali, M.Imdad, D.Miheu and M.Tanveer,Common xed points of strict contractions in

Menger spaces, Acta Math. Hungar. 132(4) (2011), 367-386.

M. A. Al-Thaga and N. Shahzad, Generalized I-nonexpansive selfmaps and invariant

approximations, Acta Math. Sinica 24, no5, (2008), 867-876.

I.Beg and M. Abbas,Common xed points of weakly compatible and noncommuting map-

pings in Menger spaces, Int. J. Mod. Math. 3(3) (2008), 261-269.

S.Beloul

I.Beg and M. Abbas,Existence of common xed points in Menger spaces, Commun.

Appl. Nonlinear Anal. 16(4) (2009), 93-100.

I.Beg and S.Chauhan,Fixed point for compatible and subsequentially continuous map-

pings in menger spaces and applications, Novi Sad J. Math. Vol. 43, No. 1, 2013, 131-144.

H. Bouhadjera and C.G.Thobie,Common xed point theorems for pairs of subcompatible

maps,arXiv:0906.3159v1 [math.FA],(2009).

S.Chauhan and D.Pant,Fixed point theorems for compatible and subsequentially contin-

uous mappings in Menger spaces,J. Nonlinear Sci. Appl. 7 (2014), 78-89.

D. Doric, Z. Kadelburg and S. Radenovic, A note on occasionally weakly compatible

mappings and common xed point, Fixed Point Theory 13,(2012),475-480.

M.Imdad, J. Ali and M. Tanveer, Remarks on some recent metrical common xed point

theorems, Appl. Math. Lett. 24(2011), 11651169.

M.Imdad,M. Tanveer and M.Hassan,Some common xed point theorems in Menger

PM spaces, Fixed Point Theory Appl. Vol. 2010, Article ID 819269, 14 pp.

M. Imdad, J. Ali and M. Tanveer, Coincidence and common xed point theorems for

nonlinear contractions in Menger PM spaces, Chaos, Solitons Fractals 42(5) (2009),

-3129.

G. Jungck,Commuting mappings and xed points, Amer. Math. Monthly, 83(4)(1976),

-263.

G. Jungck,Compatible mappings and common xed points, Int. J. Math. Math. Sci. 9

(1986) 771-779.

G. Jungck and B.E Rhoades,Fixed point for set valued functions without continuity,

Indian J. Pure Appl. Math. 29 (3),(1998) 227-238.

I.Kubiaczyk and S. Sharma, Some common xed point theorems in Menger space under

strict contractive conditions, Southeast Asian Bull. Math. 32 (2008), 117-124.

S.Kumar and B.D.Pant, A Common fxed point theorem in probabilistic metric spaces

using implicit relation, Filomat 22(2) (2008), 43-52.

K.Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535-537.

B.D.Pant, M. Abbas and S. Chauhan, Coincidences and common fxed points of weakly

compatible mappings in Menger Spaces, J. Indian Math. Soc. 80(1-4) (2013), 127-139.

R.P Pant,A common xed point theorem under a new condition, Indian. J. Pure

Appl.Math. 30 (2),(1999) 147-152.

R.P Pant, R.K Bisht and D.Arora,Weak reciprocal continuity and xed point theorems,

Ann Univ Ferrara ,57,(2011) 181-190.

V.Popa, A general xed point theorem for four weakly compatible mappings satisfying

an implicit relation, Filomat n 19 (2005), 45-51.

S. Sessa, On a weak commutativity condition of mappings in xed point considerations,

Publ. Inst. Math.Beograd 32 (46) (1982) 149-153.

M.R. Singh and Y. Mahendra Singh Compatible mappings of type (E) and common

xed point theorems of Meir-Keeler type, International J. Math. Sci. Engg. Appl. 1

(2),(2007) 299-315.

M.R. Singh and Y. Mahendra Singh,On various types of compatible maps and common

xed point theorems for non-continuous maps, Hacet. J. Math. Stat.40(4),(2011) 503 -

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)