Azadeh Jazayeri, Bahman Rezaei, Akbar Tayebi

DOI Number
First page
Last page


Every Berwald metric is a special generalized Berwald metric. In this paper, we study the class of projectively flat generalized Berwald (α; β)-metrics of isotropic S-curvature. We find some conditions under which this class of Finsler metrics reduces to the class of Berwald metrics.


Berwald (α; β)-metric, Finsler metric, isotropic S-curvature.

Full Text:



B. Aradi, M. Barzagari and A. Tayebi: Conjugate and conformally conjugate parallelisms on Finsler manifolds. Periodica. Math. Hungarica 74 (2017), 22–30.

M. Atashafrouz: Characterization of 3-dimensional left-invariant locally projectively flat Randers metrics. J. Finsler Geom. Appl. 1 (1) (2020), 96–102.

X. Cheng: The (α; β)-metrics of scalar flag curvature. Differ. Geom. Appl. 35 (2014), 361–369.

X. Cheng and Z. Shen: A class of Finsler metrics with isotropic S-curvature. Israel J. Math. 169 (2009), 317–340.

G. Hamel: Uber die Geometrien in denen die Geraden die K¨urtzesten sind. Math. Ann. 57 (1903), 231–264.

F. Kamelaei: On Projectively Related (α; β)-metrics. J. Finsler Geom. Appl. 3 (2) (2022), 64–77.

H. A. Karimi: S-Curvature of left invariant Randers metrics on some simple Lie groups. J. Finsler Geom. Appl. 2 (2) (2021), 66–76.

B. Najafi and A. Tayebi: Finsler Metrics of scalar flag curvature and projective invariants. Balkan J. Geom. Appl. 15 (2010), 90–99.

A. Rapcsak ´ : Uber die bahntreuen Abbildungen metrisher R¨aume ¨ . Publ. Math. Debrecen, 8 (1961), 285–290.

Z. Shen: Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, 2001.

Z. Shen: Volume comparison and its applications in Riemann-Finsler geometry. Advances. Math. 128 (1997), 306–328.

A. Tayebi and M. Barzegari: Generalized Berwald spaces with (α; β)-metrics. Indagationes. Math. (N.S.). 27 (2016), 670–683.

A. Tayebi and F. Eslami: On a class of generalized Berwald manifolds. arXiv:2301.01001.

A. Tayebi and B. Najafi: Classification of 3-dimensional Landsbergian (α; β)-mertrics. Publ. Math. Debrecen. 96 (2020), 45–62.

A. Tayebi and M. Rafie. Rad: S-curvature of isotropic Berwald metrics. Science in China, Series A: Math. 51 (2008), 2198–2204.

A. Tayebi and M. Razgordani: Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties. Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math. RACSAM 112 (2018), 1463–1485.

A. Tayebi and M. Shahbazi Nia: A new class of projectively flat Finsler metrics with constant flag curvature K = 1. Differ. Geom. Appl, 41 (2015), 123–133.

C. Vincze: On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors. Europ. J. Math. 3 (2017), 1098–1171.

DOI: https://doi.org/10.22190/FUMI231123022J


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)