### Coefficient estimate of BI-Bazilevic Functions of Sakaguchi type based on Srivastava-Attiya Operator

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, Coecient estimates for bi-univalent Ma-Minda starlike

and convex functions, Appl. Math. Lett. 25 (2012), 344{351.

B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569{1573.

D. A. Brannan, J. Clunie and W. E. Kirwan, Coecient estimates for a class of star-like functions, Canad. J. Math.

(1970), 476{485.

D.A. Brannan and J.G. Clunie (Editors), Aspects of Contemporary Complex Analysis, Academic Press, London, 1980.

D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31 (2)

(1986), 70{77.

J. Choi and H.M. Srivastava, Certain families of sries associated with the Hurwitz-Lerch Zeta function, Appl. Math.

Comput., 170 (2005), 399{409.

E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, Journal of Classical Analysis

(1) (2013), 49{60.

C. Ferreira and J.L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl., 298

(2004), 210{224.

T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl.,

(1972), 746{765.

M. Garg, K. Jain and H. M. Srivastava, Some relationships between the generalized Apostol-Bernoulli polynomials

and Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct., 17 (2006), 803{815.

T. Hayami and S. Owa, Coecient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15{26.

K. I. Noor, On Bazilevic functions of complex order, Nihonkai Math. J., 3 (1992), 115{124.

I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain oneparameter

families of integral operators, J. Math. Anal. Appl., 176 (1993), 138{147.

M. Lewin, On a coecient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63{68.

X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495{1504.

S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative

and other integral representations, Appl. Math. comput., 154 (2004), 725{733.

S.-D. Lin, H.M.Srivastava and P.-Y. Wang, Some espansion formulas for a class of generalized Hurwitz-Lerch Zeta

functions, Integral Transforms Spec. Funct., 17 (2006), 817{827.

W.C. Ma, D. Minda, A unied treatment of some special classes of functions, in: Proceedings of the Conference on

Complex Analysis, Tianjin, 1992, 157 - 169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.

E. Netanyahu, The minimal distance of the image boundary from the origin and the second coecient of a univalent

function in z < 1, Arch. Rational Mech. Anal. 32 (1969), 100{112.

C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Gottingen, 1975.

J.K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes of strongly starlike and

strongly convex functions, J. Math. Inequal., 3 (2009), 129{137.

D. Raducanu and H. M. Srivastava, A new class of analytic functions dened by means of a convolution operator

involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. funct., 18 (2007), 933{943

G.L. Reddy and K.S. Padmanaban, On analytic functions with reference to the Bernardi integral operator, Bull.

Austral. Math. Soc., 25 (1982), 387{396.

K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1) (1959), 72-75.

C. Selvaraj and C. S. Moni, Subordination results for a class of Bazilevic functions with respect to symmetric points,

Stud. Univ. Babes-Bolyai Math. 58 (1) (2013), 23{30.

B. Srutha keerthi, S. Chinthamani,Certain coecient estimates for bi-univalent Sakaguchi type functions,

AJMAA,Volume 10, Issue 1, Article 1,(2013), 1{7, .

H.M. Srivastava and A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and dierential

subordination, Integral Transforms Spec. funct., 18 (2007), 207{216.

H.M. Srivastava and J. Choi, Series associated with the Zeta and reated fubctions, Dordrecht, Boston, London,

Kluwer Academic Publishers, 2001.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl.

Math. Lett. 23 (2010), 1188{1192.

T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.

Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coecient estimates for a certain subclass of analytic and bi-univalent

functions, Appl. Math. Lett. 25 (2012), 990{994.

Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and

associated coecient estimate problems, Appl. Math. Comput. 218 (2012), 11461{11465.

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)