On the existence of Besicovitch Almost periodic solutions for a class of neutral delay differential equations

Moez Ayachi, Dhaou Lassoued

DOI Number
First page
Last page


We study the existence of a Besicovitch almost periodic solution for a class of second order neutral delay differential equations $$u''(t-r)+D_1F(u(t-r),u(t-2r),t-r)+ D_2F(u(t),u(t-r),t)=0,$$ in a Hilbert space, under some hyptoheses on the function $F(\cdot, \cdot, t)$. Here, $F: H\times H \times \mathbb{R} \rightarrow \mathbb{R}$ denotes a differentiable function, $D_j$, $j=1,2$, denotes the partial differential with respect to the $j$th vector variable and $r\in (0, \infty)$ is a fixed real number. The approach we use is based on a variational method applied on a Hilbert space of Besicovitch almost periodic functions.


delay differential equations; almost periodic solutions; variational method

Full Text:



C.D. Aliprantis & K.C. Border, Infinite dimensional analysis, Second edition, Springer-Verlag, Berlin, 1999.

J.-P. Aubin; Applied functional analysis, John Wiley & Sons, New York, 1979.

M. Ayachi; On the almost periodic solutions of Lattices equations Applicable Analysis, DOI:10.1080/00036811.2011.604848

M. Ayachi; Variational methods and almost periodic solutions of second or- der functional differential equations with infinite delay Commun. Math. Anal. 9 (2010), pp. 15-31.

M. Ayachi and J. Blot; A Variational approach for almost periodic solutions in retarded functional differential equations, Diff. Eqns. Appl. 1(1)(2009), pp. 67-84.

M. Ayachi and J. Blot; Variational methods for almost periodic solutions of a class of neutral delay equations Abst. Appl. Anal. 2008, p.13, Article ID 153285, doi: 1155/ 2008/153285.

P. Benilan, Fonctions vectorielles d’une variable r ́eelle, Appendix in the book of H. Brezis, Op ́erateurs maximaux monotones, et semi-groupes de contraction dans les espaces de Hilbert, North-Holland Publishing Company, Amsterdam 1973.

A. S. Besicovitch; Almost Periodic Functions Cambridge University Press, Cambridge, 1932.

J. Blot; Calculus of variations in mean and convex Lagrangians Journal of Math- ematical Analysis and Applications, vol. 134, no. 2, pp. 312321, 1988.

J. Blot; Oscillations presque-p ́eriodiques forc ́ees d’ ́equations d’Euler-lagrange, Bull. Soc. Math. France 122 (1994), pp. 285304 (French).

J. Blot and D. Lassoued; Bumps of potentials and almost periodic oscillations African Diaspora Journal of Mathematics, Vol 12, Number 2, pp. 122-133 (2011).

J. Blot, P. Cieutat, G.M. N’Gu ́er ́ekata & D. Pennequin; Superposition operators between various almost periodic function spaces and applications, Commun. Math. Anal. 6(1) (2009), 42-70.

H. Bohr; Almost Periodic Functions Chelsea, New York, 1956.

D. Bugajewski & G.M. N’Gu ́er ́ekata; On some classes of almost periodic functions

in abstract spaces, Intern. J. Math. and Math. Sci. 61 (2004), 3237-3247.

C. Corduneanu, Almost periodic oscillations and waves, Springer Science+Businesss Media, LLC, New York 2009.

L. E. Elsgolc; Qualitative Methods in Mathematical Analysis Translations of Math- ematical Monographs, Vol. 12, American Mathematical Society, Providence, RI, USA, 1964.

D. K. Hughes; Variational and optimal control problems with delayed argument Journal of Optimization Theory and Applications, vol. 2, no. 1, pp. 114, 1968.

J. Kuang; Variational Approach to Quasi-Periodic Solution of Nonautonomous Second-Order Hamiltonian Systems Abstract and Applied Analysis, vol. 2012, Article ID 271616, 14 pages, 2012. doi:10.1155/2012/271616.

S. Lang, Real and functional analysis, Third edition, Springer-Verlag, New York, Inc. 1993.

Y. Li; Existence of Periodic Solutions for Second-Order Neutral Differential Equa- tions, Electron. J. Diff. Equ. (2005), no.26, pp 1-5.

A.A. Pankov; Bounded and almost periodic solutions of nonlinear operator differ- ential equations, English edition, Kluwer Academic Publishers, Dordrecht 1990.

I. Parasyuk, A. Rustamova; Variational methods for weak quasiperiodic solutions of quasiperiodic excited lagrangian systems on riemannian manifolds Electron. J. Diff. Equ. (2012), no.66, pp 1-22.

L. D. Sabbagh; Variational problems with lags Journal of Optimization Theory and Applications, vol. 3, pp. 3451, 1969.

X.-B. Shu, Y.-T. Xu; Multiple periodic solutions for a class of second-order non- linear neutral delay equations Abst. and App. Anal. 2006, Article ID 10252, 9 pages, 2006.


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)