Muhammad Aslam Noor, Muhammad Uzair Awan, Khalida Inayat Noor

DOI Number
First page
Last page


In this paper, we consider a newly introduced class of convex functions that is eta-convex functions. We give some new quantum analogues for Hermite-Hadamard, Iynger and Ostrowski type inequalities via eta-convex functions. Some special cases are also discussed.


Convex; quantum, differentiable; Hermite-Hadamard’s inequalities; - convex functions.


Convex, quantum, differentiable, Hermite-Hadamard's inequalities, eta-convex functions.

Full Text:



P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity

assumptions. Demonstr. Math. 37(2), 299-308, (2004).

G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions

with generalized convexity, Carpath. J. Math, 31(2), 173-180, (2015).

S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means

of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5), 91-95, (1998).

S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Victoria

University Australia, (2000).

S. S. Dragomir, T. M. Rassias, Ostrowski Type Inequalities and Applications in Numerical Integration,

Springer Netherlands, 2002.

T. Ernst, A Comprehensive Treatment of q-Calculus, Springer Basel Heidelberg New York Dordrecht London.

T. Ernst, A Method for q-Calculus, J. Nonl. Math. Phy., 10(4), 487525, (2003).

H. Gauchman, Integral inequalities in q-calculus. Comput. Math. Appl. 47, 281-300 (2004).

M. E. Gordji, M. R. Delavar, On eta-convex functions, J. Math. Inequal. (2015).

M. E. Gordji, M. R. Delavar, S. S. Dragomir, Some inequalities related to eta-convex functions, RGMIA

Research Report Collection 18 (2015). Article 8.

D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of

University of Craiova, Math. Comp. Sci. Ser., 34, 82-87, (2007).

C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications, Springer-Verlag, New York,

M. A. Noor, M. U. Awan, K. I. Noor, On some inequalities for relative semi-convex functions, J. Inequal.

Appl. 2013, 2013:332.

M. A. Noor, K. I. Noor, M. U. Awan, Geometrically relative convex functions, Appl. Math. Infor. Sci., 8(2),

-616, (2014).

M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions,

Filomat, 28(7), (2014), 1463-1474.

M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Applied

Math. Computation 251 (2015), 675-679.

M. A. Noor, K. I. Noor, M. U. Awan, Quantum Ostrowski inequalities for q-differentiable convex functions,

J. Math. Inequal. (2015).

M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math.

Comput. 269, (2015), 242-251.


M. A. Noor, K. I. Noor, M. U. Awan, Quantum analogues of Hermite-Hadamard type inequalities for general-

ized convexity, In: Computation, Cryptography and Netwrok Security, (Ed. by: Nichloas Daras and Michael

Th. Rassias), Springer, Berlin, (2015).

M. A. Noor, T. M. Rassias, Some Quantum Hermite-Hadamard type inequalities for general convex functions,

In: Contributions in Mathematics and Engineering: In Honor of Constantin Caratheodory, (Ed. by: P. P.

Pardalos and T. M. Rassias), Springer, Berlin, (2015).

W. Sudsutad, S.K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. In-

equal., 9(3) (2015) 781-793.

J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on ¯nite intervals, J. Inequal. App. 2014, 121


J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference

equations. Adv. Differ. Equ. 2013, 282 (2013).


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)