### A COMBINED SDLINAR(p) MODEL AND IDENTIFICATION AND PREDICTION OF ITS LATENT COMPONENTS

**DOI Number**

**First page**

**Last page**

#### Abstract

The main subject of this paper is a combined integer-valued autoregressive

time series with both positive and negative values, based on a new thinning operator. Some important properties are analyzed. Estimators of the unknown parameters are derived and their asymptotic behavior is analyzed. A simulation and an application on real-data are also shown. In the end, a mechanism for identification and prediction of the latent dimensions of the model are presented.

#### Keywords

#### Keywords

#### Full Text:

PDF#### References

M. A. Al-Osh, E. E. A. A. Aly: First order autoregressive time series with negative binomial and geometric marginals. Comm.Statist.Theory Methods. 21 (1992), 2483-2492.

M. A. Al-Osh, A. A. Alzaid: First-order integer-valued autoregressive (INAR(1)) process. J.Time Ser.Anal. 8 (1987), 261–275.

W. Barreto-Souza, M. Bourguignon: A skew INAR(1) process on Z. Advances in Statistical Analysis. 99 (2015), 189–208.

R. C. Bradley: Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions. Probability Surveys. 2 (2005), 107–144.

L. Breiman: Probability. The Society for Industrial and Applied Mathematics, Philadelphia, 1992.

P. J. Brockwell, R. A. Davis: Time Series - Theory and Methods. Springer, New York, 1991.

C. Chesneau, M. Kachour: A parametric study for the first-order signed integer-valued autoregressive process, Journal of Statistical Theory and Practice, 6(4) (2012), 760–782.

M. S. Djordjević: An extension on INAR models with discrete Laplace marginal distributions. Communication in Statistics - Theory and Methods. (in press)

Du Jin-Guan, Li Yuan: The integer-valued autoregressive (INAR(p)) model. J. Time Ser. Anal. 12 (1991), 129–142.

R. K. Freeland: True integer value time series. AStA Advances in Statistical Analysis. 94 (2010), 217–229.

R. K. Freeland, B. McCabe: Asymptotic properties of CLS estimators in the Poisson AR(1) model. Statist.Probab.Lett. 73 (2005), 147–153.

M. Kachour, L. Truquet: A p-Order signed integer-valued autoregressive (SINAR(p)) model. Journal of Time Series Analysis. 32(3) (2011), 223–236.

H. Y. Kim, Y. Park: A non-stationary integer-valued autoregressive model. Statist. Papers. 49 (2008), 485-502.

E. McKenzie: Some simple models for discrete variate time series. Water Resources Bulletin. 21 (1985), 645–650.

E. McKenzie: Autoregressive moving-average processes with negative binomial and geometric distributions. Advances in Applied Probability. 18 (1986), 679–705.

A. S. Nastić, M. M. Ristić, H. S. Bakouch: A combined geometric INAR(p) model based on negative binomial thinning. Mathematical and Computer Modelling. 55 (2012), 1665-1672.

A. S. Nastić, M. M. Ristić, M. S. Djordjević: An INAR model with discrete Laplace marginal distributions. Brazilian Journal of Probability and Statistics. 30 (2016) 107-126.

M. M. Ristić, H. S. Bakouch, A. S. Nasti´c: A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. J. Stat. Plan. Inference. 139 (2009), 2218–2226.

M. M. Ristić, A. S. Nastić: A mixed INAR(p) model. J. Time Ser. Anal. 33 (2012), 903–915.

I. Silva, M. E. Silva: Asymptotic distribution of the Yule-Walker estimator for INAR(p) processes. Statistic and Probability Letters. 76(15), 1655–1663.

D. Tjøstheim: Estimation in nonlinear time series models. Stochastic Process Appl. 21 (1986), 251-273.

C. H. Weiß: The combined INAR(p) models for time series of counts, Statist. Probab. Lett. 78 (2008), 1817-1822.

H.White: Asymptotic theory for econometrics. Academic Press, San Diego, 2001.

H. Zheng, I. V. Basawa, S. Datta: Inference for pth-order random coefficient integer-valued autoregressive processes. J. Time Ser. Anal. 27 (2006), 411–440.

H. Zhang, D. Wang, F Zhu: Inference for INAR(p) processes with signed generalized power series thinning operator. Journal of Statistical Planning and Inference 140 (2010), 667–683

R. Zhu, H. Joe: Modelling count data time series with Markov processes based on binomial thinning. J. Time Series Anal. 27(5) (2006), 725-738.

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)