### ON φ-IDEAL WARD CONTINUITY

Bipan Hazarika, Ayhan Esi

DOI Number
Array
First page
681
Last page
690

#### Abstract

An ideal I is a family of subsets of positive integers N which is closed under taking finite unions and subsets of its elements. Let P denote the space whose elements are finite sets of distinct positive integers. Given any element σ of P, we denote by p(σ) the sequence {p_{n}(σ)} such that p_{n}(σ)=1 for n∈σ and p_{n}(σ)=0 otherwise. Further P_{s}={σ∈P:∑_{n=1}^{∞}p_{n}(σ)≤s}, i.e. P_{s} is the set of those σ whose support has cardinality at most s, and we get Φ={φ=(φ_{n}):0<φ₁≤φ_{n}≤φ_{n+1}[mbox]<LaTeX>\mbox{~and~}</LaTeX>nφ_{n+1}≤(n+1)φ_{n}}. A sequence (x_{n}) of points in R is called φ-ideal convergent (or I_{φ}-convergent) to a real number ℓ if for every ε>0  {s∈N:(1/(φ_{s}))∑_{n∈σ,σ∈P_{s}}|x_{n}-ℓ|≥ε}∈I. We introduce φ-ideal ward continuity of a real function. A real function is φ-ideal ward continuous if it preserves φ-ideal quasi Cauchy sequences where a sequence (x_{n}) is called to be φ-ideal quasi Cauchy (or I_{φ}-quasi Cauchy) when (Δx_{n})=(x_{n+1}-x_{n}) is φ-ideal convergent to 0. i.e. a sequence (x_{n}) of points in R is called φ-ideal quasi Cauchy (or I_{φ}-quasi Cauchy) for every ε>0 if  {s∈N:(1/(φ_{s}))∑_{n∈σ,σ∈P_{s}}|x_{n+1}-x_{n}|≥ε}∈I. In this paper, we prove that any φ-ideal continuous function is uniformly continuous either on an interval or on a φ-ideal ward compact subset of R. Also we characterize the uniform continuity via φ-ideal quasi-Cauchy sequences.

#### Keywords

Ideal convergence, ideal continuity, -sequence, quasi-Cauchy sequence

#### Keywords

ideal convergence; ideal continuity; φ-sequence; quasi-Cauchy sequence.

PDF

#### References

D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, 117, 4, (2010), 328-333.

CakalliHazarika : H.Çakallı, and B. Hazarika, Ideal-quasi-Cauchy sequences, Jour. Ineq. Appl., 2012(2012) pages 11. , doi:10.1186/1029-242X-2012-234

bibitem{Cakalli25} H. c{C}akalli, Sequential definitions of connectedness, Appl. Math. Latters, 25(2012), 461-465.

Cakallinthetawardcontinuity : H. Çakallı, N_{θ}-ward continuity, Abstract and Applied Analysis, Vol 2012(2012) Article ID 680456, p-8. doi:10.1155/2012/680456.

CakalliKaplannthetaquasicauchysequencs : H. Çakallı, H. Kaplan, A study on N_{θ}-quasi Cauchy sequences, Abstract and Applied Analysis, Volume 2013 (2013), Article ID 836970, 4 pages. , doi.org/10.1155/2013/836970

Cakalli25 : H. Çakallı, Sequential definitions of connectedness, Appl. Math. Letters, 25(2012), 461-465.

CakalliForwardcontinuity : H. Çakallı, Forward continuity, J. Comput. Anal. Appl., 13, 2, (2011), 225-230.

CakalliStatisticalwardcontinuity : H. Çakallı, Statistical ward continuity, Appl. Math. Letters, 24, No:10, (2011), 1724-1728. , doi:10.1016/j.aml.2011.04.029

CakallistatisticalquasiCauchysequences : H. Çakallı, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling, 54, No:5-6, (2011), 1620-1624. , doi: 10.1016/j.mcm.2011.04.037

CakalliSlowlyoscillatingcontinuity : H. Çakallı, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2008, Article ID 485706, (2008). , MR textbf{2009b}:26004

bibitem{Cakallilacunarystatisticalconvergenceintopgroups} ........., Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. textbf{26} 2, (1995), 113-119, MR textbf{95m}:40016.

CakalliSequentialdefinitionsofcompactness : H. Çakallı, Sequential definitions of compactness, Appl. Math. Letters, 21(6)(2008) 594-598. , (2008).

bibitem{CakalliNewkindsofcontinuities} ........., New kinds of continuities, Comput.Math. Appl, textbf{61}, (2011), 960-965.

CakalliOnGcontinuity : H. Çakallı, On G-continuity, Comput. Math. Appl., 61, (2011), 313-318.

CakalliDeltaquasiCauchysequences : H. Çakallı, Delta quasi-Cauchy sequences, Math. Comput. Modelling, 53, (2011), 397-401.

bibitem{CakalliAstudyonstatisticalconvergence} ........., A study on statistical convergence, Funct. Anal. Approx. Comput., textbf{1}, no. 2, (2009), 19-24, MR2662887.

CakalliarXiv:1305.3227v1 : H. Çakallı, A study on ideal ward continuity, arXiv:1305.3227v1

CakalliSonmezAras : H. Çakalli, A. Sönmez, and Ç. G. Aras, λ-statistically ward continuity, arXiv:1305.0697. bibitem{CakalliandPratul} H. c{C}akalli, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett., textbf{22}, No: 11, November (2009), 1665-1669, MR textbf{2010k}:54006.

bibitem{CasertaMaioKocinac} A. Caserta, G. Di Maio, Lj. D. R. Kov{c}inac, Statistical convergence in function spaces, Abstr. Appl. Anal. Vol. 2011(2011), Article ID 420419, 11 pages.

bibitem{CasertaKocinac} A. Caserta, Lj.D.R. Kov{c}inac, On statistical exhaustiveness, Appl. Math. Letters, 25(2012), 1447-1451.

bibitem{ChengLinLanLiu} L. X. Cheng, G. C. Lin, Y. Y. Lan, H. Liu, Measure theory of statistical convergence, Science in China, Ser. A: Math. 51(2008), 2285-2303.

bibitem{Choudhary09} B. Choudhary, Lacunary \$I\$-convergent sequences, in: Real Analysis Exchange Summer Symposium, 2009, pp. 56-57.

ConnorGrosseErdmann : J. Connor, K. G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., 33, (1), (2003), 93-121. MR textbf{2004e}:26004

bibitem{ConnorGanichevandKadetsAcharacterizationofBanachspaceswithseparabledualsviaweakstatisticalconvergence} J. Connor, M. Ganichev, and V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., textbf{244}, 1, (2000), 251-261, MR textbf{2000m}:46042

bibitem{Debnath} P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63(2012),708-715.

DikandCanak : M.Dik, and I.Canak, New Types of Continuities, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2010, Article ID 258980, (2010). , doi:10.1155/2010/258980

Fast : H. Fast, Sur la convergence statistique, Colloq. Math. 2, (1951), 241-244. MR textbf{14}:29c

bibitem{FreedmanandSemberandRaphaelSomecesarotypesummabilityspaces} A. R. Freedman, J. J. Sember, and M.Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., textbf{3}, 37, (1978), 508-520, MR textbf{80c}:40007

Fridy : J. A. Fridy, On statistical convergence, Analysis, 5, (1985), 301-313. MR textbf{87b}:40001

bibitem{FridyandOrhanlacunarystatisconvergence} J. A. Fridy, and C. Orhan, Lacunary statistical convergence, Pacific J. Math., textbf{160} 1 (1993) 43-51.

bibitem{FridyandOrhanlacunarystatisticalsummability} J. A. Fridy, and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., textbf{173} (1993), 497-504.

A. R. Freedman, J. J. Sember, and M.Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., textbf{3}, 37, (1978), 508-520, MR textbf{80c}:40007

A. Esi, B. Hazarika, \$lambda\$-ideal convergence in intuitionistic fuzzy 2-normed linear space, Journal of Intelligent and Fuzzy Systems, 24(4)(2013), 725-732, DOI: 10.3233/IFS-2012-0592

A. Esi, B. Hazarika, Lacunary Summable Sequence Spaces of Fuzzy Numbers Defined By Ideal Convergence and an Orlicz Function, Afrika Matematika, DOI: 10.1007/s13370-012-0117-3

J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173, (1993), 497-504, MR 95f :40004.J. A. Fridy, C. Orhan, Lacunary statistical convergence, Pacific J. Math., 160(1)(1993), 43-51, MR 94j:40014.

B. Hazarika, On ideal convergence in topological groups, Scientia Magna,7(4)(2011), 80-86.

B. Hazarika, Some lacunary difference sequence spaces defined by Musielak-Orlicz functions, Thai J. Math. 9(3)(2011) 659-671

B. Hazarika, E. Savac{s}, Some \$I\$-convergent lambda-summable difference sequence spaces of fuzzy real numbers defined by a sequence of Orlicz functions, Math. Comp. Modell. 54 (11-12)(2011) 2986-2998.

bibitem{FridyOrhanLacunary statistical summability} J. A. Fridy, C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., 173, (1993), 497-504, MR 95f :40004.

bibitem{Hazarika123} B. Hazarika, Ideal convergence in locally solid Riesz spaces,(under review) Topology and its Appll.

B. Hazarika, E. Savas, Lacunary statistical convergence of double sequences and some inclusion results in \$n\$-normed spaces, Acta Mathematica Vietnamica, (Accepted for publications).

S. G"ahler, 2-metrische R"aume and ihre topologische Struktur, Math. Nachr. 26(1963) 115-148.

B. Hazarika, Lacunary \$I\$-convergent sequence of fuzzy real numbers, The Pacific Jour. Sci. Techno., 10(2) (2009),203-206.

Hazarika25 : B. Hazarika, Fuzzy real valued lacunary I-convergent sequences, Appl. Math. Letters 25(3)(2012) 466--470.

Hazarika24 : B. Hazarika, Lacunary difference ideal convergent sequence spaces of fuzzy numbers, J. Intel. Fuzzy Systems, 25(1)(2013), 157-166. ,DOI: 10.3233/IFS-2012-0622

B. Hazarika, On fuzzy real valued generalized difference \$I\$-convergent sequence spaces defined by Musielak-Orlicz function, Journal of Intelligent and Fuzzy Systems, 25(1)(2013), 9-15, DOI: 10.3233/IFS-2012-0609

Hazarik26 : B. Hazarika, On generalized difference ideal convergence in random 2-normed spaces, Filomat, 26(6) (2012), 1265-1274.

..........., Lacunary Ideal quasi Cauchy sequences (submitted).

..........., On lacunary ideal ward continuity (submitted).

hazarika : B. Hazarika, φ-statistically-quasi Cauchy sequences, Jour. Egyptian Math. Soc. DOI:10.1016/j.joems.2015.07.003.

Keane : M. Keane, Understanding Ergodicity, Integers 11B (2011) 1-11.

H.c{C}akalli, Forward continuity, J. Comput. Anal. Appl., textbf{13}, 2, (2011), 225-230.

.........., Statistical ward continuity, Appl. Math. Lett., 24, No:10, (2011), 1724-1728, doi:10.1016/j.aml.2011.04.029

D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, textbf{117}, 4, (2010), 328-333.

H.c{C}akalli, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling, textbf{54}, No:5-6, (2011), 1620-1624, doi: 10.1016/j.mcm.2011.04.037

........., Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2008, Article ID 485706, (2008), MR textbf{2009b}:26004

R. C. Buck, Solution of problem 4216 Amer. Math. Monthly textbf{55}, (1948), 36. MR textbf{15}: 26874

E. C. Posner, Summability preserving functions, Proc.Amer.Math.Soc. textbf{12}, 1961, 73-76. MR textbf{22}12327

T. B. Iwinski, Some remarks on Toeplitz methods and continuity, Comment.Math. Prace Mat. textbf{17}, 1972, 37-43. MR textbf{48}759

V. K. Srinivasan, An equivalent condition for the continuity of a function, Texas J. Sci. textbf{32}, 1980, 176-177. MR textbf{81f}:26001

J. Antoni, On the \$A\$-continuity of real functions II, Math. Slovaca, textbf{36}, No.3, (1986), 283-287. MR textbf{88a}:26001

bibitem{AntoniandSalat} J. Antoni and T. u{S}al'at, On the \$A\$-continuity of real functions, Acta Math. Univ. Comenian. textbf{39}, (1980), 159-164. MR textbf{82h}:26004

E. Spigel and N. Krupnik, On the \$A\$-continuity of real functions, J.Anal. textbf{2}, (1994), 145-155. MR textbf{95h}:26004

E."Ozt"urk, On almost-continuity and almost \$A\$-continuity of real functions, Comm.Fac.Sci. Univ.Ankara Ser. A1 Math. textbf{32}, 1983, 25-30. MR textbf{86h}:26003

E. Savac{s} and G. Das, On the \$A\$-continuity of real functions, .{I}stanbul Univ. Fen Fak. Mat Derg. textbf{53}, (1994), 61-66. MR textbf{97m}:26004

J. Borsik and T. u{S}al'at, On \$F\$-continuity of real functions, Tatra Mt. Math. Publ. textbf{2}, 1993, 37-42. MR textbf{94m}:26006

A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge, UK, (1979).

H. Fast, Sur la convergence statistique, Colloq. Math. textbf{2}, (1951), 241-244. MR textbf{14}:29c

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly textbf{66}, 1959, 361-375. MR textbf{21}:3696

R. C. Buck, Generalized asymptotic density, Amer. J. Math. textbf{75}, (1953), 335-346, MR textbf{14},854f

P. Erdos and G. Tenenbaum, Sur les densitﾴes de certaines suites dﾒentiers, Proc. Lond. Math. Soc., textbf{59}, 3, (1989), 417-438, MR textbf{90h}:11087

H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., textbf{347}, 5, (1995), 1811-1819, MR textbf{95h}:40010

A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math.,textbf{95}, 2, (1981), 293-305, MR textbf{82m}:10081

KostyrkoSalatWilczynski : P. Kostyrko, T. Salát, and W. Wilczyński, I-convergence, Real Analysis Exchange, 26(2)(2000-2001),669-686.

I. J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., textbf{104}, 1, (1988), 141-145, MR textbf{89k}:40012

J. Connor and M. A. Swardson, Strong integral summability and the Stone-Cech compactification of the half-line, Pacific J. Math., textbf{157}, 2, (1993), 201-224, MR textbf{94f}:40007

bibitem{MakarovLevinRubinovMathematicalEconomicTheory} V. L. Makarov, M. J. Levin, and A. M. Rubinov, Mathematical Economic Theory: Pure and Mixed Types of EconomicMechanisms, Advanced Textbooks in Economics, North-Holland, Amsterdam, The Netherlands, textbf{33}, (1995).

bibitem{MckenzieTurnpiketheory} L. W. Mckenzie, Turnpike theory, Econometrica, textbf{44}, 5, (1976), 841-865, MR textbf{56}:17735

bibitem{PehlivanandMamedovStatisticalclusterpointsandturnpike} S. Pehlivan and M. A. Mamedov, Statistical cluster points and turnpike, Optimization, textbf{48}, 1, (2000), 93-106, MR textbf{2001b}:49008

bibitem{ConnorGanichevandKadetsAcharacterizationofBanachspaceswithseparabledualsviaweakstatisticalconvergence} J. Connor, M. Ganichev, and V. Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., textbf{244}, 1, (2000), 251-261, MR textbf{2000m}:46042

bibitem{Cakallilacunarystatisticalconvergenceintopgroups} H. c{C}akalli, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. textbf{26} 2, (1995), 113-119, MR textbf{95m}:40016.

bibitem{MaioKocinac} G. D. Maio, and L. D. R. Kocinac, Statistical convergence in topology, Topology Appl. textbf{156}, (2008), 28-45, MR textbf{2009k}:54009.

bibitem{CakalliandKhan} H. c{C}akalli, and M. K. Khan, Summability in Topological Spaces, Appl. Math. Lett., textbf{24}, (2011), 348-352.

bibitem{Fridy} J. A. Fridy, On statistical convergence, Analysis, textbf{5}, (1985), 301-313 . MR textbf{87b}:40001

bibitem{FridyandOrhanlacunarystatisconvergence} J. A. Fridy, and C. Orhan, Lacunary statistical convergence, Pacific J. Math., textbf{160} 1 (1993) 43-51.

bibitem{FridyandOrhanlacunarystatisticalsummability} J. A. Fridy, and C. Orhan, Lacunary statistical summability, J. Math. Anal. Appl., textbf{173} (1993), 497-504.

bibitem{FreedmanandSemberandRaphaelSomecesarotypesummabilityspaces} A. R. Freedman, J. J. Sember, and M.Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., textbf{3}, 37, (1978), 508-520, MR textbf{80c}:40007

bibitem{KostyrkoSalatWilczynski} P. Kostyrko, T. u{S}al'at, and W. Wilczy'nski, \$I\$-convergence, Real Analysis Exchange, 26(2)(2000-2001),669-686.

bibitem{ConnorGrosseErdmann} J. Connor, K. G. Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math., textbf{33}, (1), (2003), 93-121. MR textbf{2004e}:26004

bibitem{SleziakIcontinuityintopologicalspaces} M. Sleziak, \$I\$-continuity in topological spaces, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher Univesity Nitra, 6 (2003), 115-122.

bibitem{CakalliSequentialdefinitionsofcompactness} H. c{C}akalli, Sequential definitions of compactness, Applied Mathematics Letters, 21 , No:6, 594-598, (2008).

bibitem{CakalliNewkindsofcontinuities} ........., New kinds of continuities, Comput.Math. Appl, textbf{61}, (2011), 960-965.

bibitem{CakalliSlowlyoscillatingcontinuity}.............., Slowly oscillating continuity, Abstract and Applied Analysis, Volume 2008, Article ID 485706, (2008).MR 2393124

bibitem{CakalliOnGcontinuity} .............., On \$G\$-continuity, Comput. Math. Appl., textbf{61}, (2011), 313-318.

bibitem{CakalliDeltaquasiCauchysequences} H.c{C}akalli, Delta quasi-Cauchy sequences, Math. Comput. Modelling, 53, (2011), 397-401.

bibitem{CakalliandPratul} H. c{C}akalli, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett., textbf{22}, No: 11, November (2009), 1665-1669, MR textbf{2010k}:54006.

SalatTripathyZimon : T. Salát, B. C. Tripathy and M. Zimon, On some properties of I-convergence, Tatra Mt. Math. Publ. 28(2004), 279-286. bibitem{Schoenberg} I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly textbf{66}, 1959, 361-375. MR textbf{21}:3696

SleziakIcontinuityintopologicalspaces : M. Sleziak, I-continuity in topological spaces, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher Univesity Nitra, 6 (2003), 115-122. bibitem{SonmezCakalli} A. Sonmez, H. c{C}akalli, Cone normed spaces and weighted means, Mathematical and Computer Modelling, vol. 52, no. 9-10, pp. 1660ﾖ1666, 2010.

bibitem{TripathyHazarika09} B. C. Tripathy and B. Hazarika, Paranorm \$I\$-convergent sequence spaces, textit{Math. Slovaca,} textbf{59(4)} (2009) 485-494.

bibitem{TripathyHazarika11} .................., Some \$I\$-convergent sequence spaces defined by Orlicz functions, textit{Acta Math. Appl. Sinica,} textbf{27(1)} (2011) 149-154.

bibitem{TripathyHazarika} B. C. Tripathy and B. Hazarika, \$I\$-monotonic and \$I\$-convergent sequences, Kyungpook Math. J. 51(2011), 233-239, DOI 10.5666-KMJ.2011.51.2.233

TripathyHazarikaChoudhary : B. C. Tripathy, B. Hazarika, B. Choudhary, Lacunary I-convergent sequences, Kyungpook Math. J.52(4)(2012), 473-482.

Winkler : P. Winkler, Mathematical Puzzles: A Connoisseurs Collection, A. K. Peters LTD,(2004) ISBN1-56881-201-9. bibitem{CakalliStatisticalwardcontinuity} H.c{C}akalli, Statistical ward continuity, Appl. Math. Lett., 24, No:10, (2011), 1724-1728, doi:10.1016/j.aml.2011.04.029

bibitem{CakallistatisticalquasiCauchysequences} ............, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling, textbf{54}, No:5-6, (2011), 1620-1624, doi: 10.1016/j.mcm.2011.04.037

bibitem{CakalliDeltaquasiCauchysequences} H.c{C}akalli, Delta quasi-Cauchy sequences, Math. Comput. Modelling, 53, (2011), 397-401.

bibitem{DikandCanak} M.Dik, and I.Canak, New Types of Continuities, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2010, Article ID 258980, (2010), doi:10.1155/2010/258980

bibitem{CakalliandPratul} H. c{C}akalli, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett., textbf{22}, No: 11, November (2009), 1665-1669, MR textbf{2010k}:54006.

bibitem{FridyandOrhanlacunarystatisconvergence} J.A.Fridy, and C.Orhan, Lacunary statistical convergence, Pacific J. Math., textbf{160} 1 (1993) 43-51.

bibitem{FridyandOrhanlacunarystatisticalsummability} J.A.Fridy, and C.Orhan, Lacunary statistical summability, J. Math. Anal. Appl., textbf{173} (1993), 497-504.

bibitem{SleziakIcontinuityintopologicalspaces} M. Sleziak, \$I\$-continuity in topological spaces, Acta Mathematica, Faculty of Natural Sciences, Constantine the Philosopher Univesity Nitra, 6 (2003), 115-122.

bibitem{FreedmanandSemberandRaphaelSomecesarotypesummabilityspaces} A.R. Freedman, J.J. Sember, and M.Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc., textbf{3}, 37, (1978), 508-520, MR textbf{80c}:40007

bibitem{CakalliNewkindsofcontinuities} H.c{C}akalli, New kinds of continuities, Comput.Math. Appl, textbf{61}, {2011}, 960-965.

bibitem{CakalliOnGcontinuity} .............., On \$G\$-continuity, Comput. Math. Appl., textbf{61}, (2011), 313-318.

bibitem{CakalliAstudyonstatisticalconvergence} ..........., A study on statistical convergence, Funct. Anal. Approx. Comput., textbf{1}, no. 2, (2009), 19-24, MR2662887.

bibitem{CakalliForwardcompactness} .............., Forward compactness, Conference on Summability and Applications, Shawnee State University, November 6, 2009 November 8, (2009), http://webpages.math.luc.edu/~mgb/ShawneeConference/Articles/HuseyinCakalliOhio.pdf .

bibitem{KizmazOncertainsequencespaces} H.Ki zmaz, On Certain Sequence Spaces, Canad. Math. Bull., textbf{24}, 2, (1981), 169-176, MR textbf{82g:}46022

bibitem{BoosClassicalmodernmethodsinsummability} J.Boos Classical and modern methods in summability, Oxford University Press, New York, (2000).

bibitem{Buck} R.C.Buck, Solution of problem 4216 Amer. Math. Monthly textbf{55}, (1948), 36. MR textbf{15}: 26874

bibitem{BuckGeneralizedasymptoticdensity} R.C.Buck, Generalized asymptotic density, Amer. J. Math. textbf{75}, (1953), 335-346, MR textbf{14},854f

bibitem{BurtonColeman} D.Burton and J.Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, textbf{117}, 4, (2010), 328-333.

bibitem{CakalliStatisticalwardcontinuity} ............., Statistical ward continuity, Appl. Math. Lett., 24, No:10, (2011), 1724-1728, doi:10.1016/j.aml.2011.04.029

bibitem{CakalliandPratul} H.c{C}akalli, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett., textbf{22}, No: 11, November (2009), 1665-1669, MR textbf{2010k}:54006.

bibitem{CakalliSequentialdefinitionsofcompactness}H.c{C}akalli, Sequential definitions of compactness, Applied Mathematics Letters, 21 , No:6, 594-598, (2008).

bibitem{CakalliSlowlyoscillatingcontinuity}.............., Slowly oscillating continuity, Abstract and Applied Analysis, Volume 2008, Article ID 485706, (2008).MR 2393124

bibitem{Cakallilacunarystatisticalconvergenceintopgroups} H.c{C}akalli, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. textbf{26} 2, (1995), 113-119, MR textbf{95m}:40016.

bibitem{CakalliandKhan} H.c{C}akalli, and M.K.Khan, Summability in Topological Spaces, Appl. Math. Lett., textbf{24}, (2011), 348-352.

bibitem{CakalliForwardcontinuity} .........., Forward continuity, J. Comput. Anal. Appl., textbf{13}, 2, (2011), 225-230.

bibitem{ConnorandSwardsonStrongintegralsummabilityandstonecompactification} J.Connor and M.A.Swardson, Strong integral summability and the Stone-Cech compactification of the half-line, Pacific J. Math., textbf{157}, 2, (1993), 201-224, MR textbf{94f}:40007

bibitem{ConnorGanichevandKadetsAcharacterizationofBanachspaceswithseparabledualsviaweakstatisticalconvergence} J.Connor, M.Ganichev, and V.Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., textbf{244}, 1, (2000), 251-261, MR textbf{2000m}:46042

bibitem{ErdosSurlesdensitesde} P.Erdos and G.Tenenbaum, Sur les densitﾴes de certaines suites dﾒentiers, Proc. Lond. Math. Soc., textbf{59}, 3, (1989), 417-438, MR textbf{90h}:11087

bibitem{FreedmanandSemberDensitiesandsummability} A.R.Freedman and J.J.Sember, Densities and summability, Pacific J. Math.,textbf{95}, 2, (1981), 293-305, MR textbf{82m}:10081

bibitem{MaddoxStatisticalconvergenceinlocallyconvex} I.J.Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., textbf{104}, 1, (1988), 141-145, MR textbf{89k}:40012

bibitem{MaioKocinac} G.D.Maio, and L.D.R.Kocinac, Statistical convergence in topology, Topology Appl. textbf{156}, (2008), 28-45, MR textbf{2009k}:54009.

bibitem{MakarovLevinRubinovMathematicalEconomicTheory} V.L.Makarov, M.J.Levin, and A.M.Rubinov, Mathematical Economic Theory: Pure and Mixed Types of EconomicMechanisms, Advanced Textbooks in Economics, North-Holland, Amsterdam, The Netherlands, textbf{33}, (1995).

bibitem{MckenzieTurnpiketheory} L.W.Mckenzie, Turnpike theory, Econometrica, textbf{44}, 5, (1976), 841-865, MR textbf{56}:17735

bibitem{MillerAmeasuretheoresubsequencecharacterizationofstatisticalconvergence} H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., textbf{347}, 5, (1995), 1811-1819, MR textbf{95h}:40010

bibitem{PehlivanandMamedovStatisticalclusterpointsandturnpike} S.Pehlivan and M.A.Mamedov, Statistical cluster points and turnpike, Optimization, textbf{48}, 1, (2000), 93-106, MR textbf{2001b}:49008

bibitem{SalatTripathyZimon}T. Sal'at, B.C. Tripathy, M. Zimon, On some properties of \$I\$-convergence, Tatra Mt. Math. Publ. textbf{28}(2004), 279-286.

bibitem{} E. Savac{s} and G. Das, On the \$A\$-continuity of real functions, .{I}stanbul Univ. Fen Fak. Mat Derg. textbf{53}, (1994), 61-66. MR textbf{97m}:26004

bibitem{Fast} H.Fast, Sur la convergence statistique, Colloq. Math. textbf{2} (1951) 241-244, MR textbf{14},29c

bibitem{SchoenbergTheintegrabilityofcertainfunctions} I.J.Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, textbf{66}, 5, (1959), 361-375, MR 104946

bibitem{BuckGeneralizedasymptoticdensity} R.C.Buck, Generalized asymptotic density, Amer. J. Math. textbf{75}, (1953), 335-346, MR textbf{14},854f

bibitem{ErdosSurlesdensitesde} P.Erdos and G.Tenenbaum, Sur les densitﾴes de certaines suites dﾒentiers, Proc. Lond. Math. Soc., textbf{59}, 3, (1989), 417-438, MR textbf{90h}:11087

bibitem{MillerAmeasuretheoresubsequencecharacterizationofstatisticalconvergence} H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc., textbf{347}, 5, (1995), 1811-1819, MR textbf{95h}:40010

bibitem{FreedmanandSemberDensitiesandsummability} A.R.Freedman and J.J.Sember, Densities and summability, Pacific J. Math.,textbf{95}, 2, (1981), 293-305, MR textbf{82m}:10081

bibitem{MaddoxStatisticalconvergenceinlocallyconvex} I.J.Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Philos. Soc., textbf{104}, 1, (1988), 141-145, MR textbf{89k}:40012

bibitem{ConnorandSwardsonStrongintegralsummabilityandstonecompactification} J.Connor and M.A.Swardson, Strong integral summability and the Stone-Cech compactification of the half-line, Pacific J. Math., textbf{157}, 2, (1993), 201-224, MR textbf{94f}:40007

bibitem{MakarovLevinRubinovMathematicalEconomicTheory} V.L.Makarov, M.J.Levin, and A.M.Rubinov, Mathematical Economic Theory: Pure and Mixed Types of EconomicMechanisms, Advanced Textbooks in Economics, North-Holland, Amsterdam, The Netherlands,textbf{33}, (1995).

bibitem{MckenzieTurnpiketheory} L.W.Mckenzie, Turnpike theory, Econometrica, textbf{44}, 5, (1976), 841-865, MR textbf{56}:17735

bibitem{PehlivanandMamedovStatisticalclusterpointsandturnpike} S.Pehlivan and M.A.Mamedov, Statistical cluster points and turnpike, Optimization, textbf{48}, 1, (2000), 93-106, MR textbf{2001b}:49008

bibitem{ConnorGanichevandKadetsAcharacterizationofBanachspaceswithseparabledualsviaweakstatisticalconvergence} J.Connor, M.Ganichev, and V.Kadets, A characterization of Banach spaces with separable duals via weak statistical convergence, J. Math. Anal. Appl., textbf{244}, 1, (2000), 251-261, MR textbf{2000m}:46042

bibitem{Cakallilacunarystatisticalconvergenceintopgroups} H.c{C}akalli, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. textbf{26} 2, (1995), 113-119, MR textbf{95m}:40016.

bibitem{MaioKocinac} G.D.Maio, and L.D.R.Kocinac, Statistical convergence in topology, Topology Appl. textbf{156}, (2008), 28-45, MR textbf{2009k}:54009.

bibitem{CakalliandKhan} H.c{C}akalli, and M.K.Khan, Summability in Topological Spaces, Appl. Math. Lett., textbf{24}, (2011), 348-352.

bibitem{ChengLinLanLiuMeasuretheoryofstatisticalconvergence} L.X.Cheng, G.C.Lin, Y.Y.Lan, H.Liu, Measure theory of statistical convergence, Science in China Series A-Mathematics, textbf{51}, 12, (2008), 2285-2303.

bibitem{Fridy} J.A.Fridy, On statistical convergence, Analysis, textbf{5}, (1985), 301-313, MR textbf{87b}:40001.

bibitem{CakalliAstudyonstatisticalconvergence} H.c{C}akalli, A study on statistical convergence, Funct. Anal. Approx. Comput., textbf{1}, no. 2, (2009), 19-24, MR2662887.

bibitem{} P. Kostyrko, T. \$breve{S}\$al\$grave{a}\$t, and W. Wilczy\$acute{n}\$ski, textit{\$I\$-convergence},Real Analysis Exchange, 26(2)(2000-2001),669-686.

bibitem{}B.C. Tripathy, B. Hazarika, \$I\$-monotonic and \$I\$-convergent sequences,Kyungpook Mathematical Journal, (in press).

bibitem{CakalliForwardcontinuity} H.c{C}akalli, Forward continuity, J. Comput. Anal. Appl., textbf{13}, 2, (2011), 225-230.

bibitem{CakalliForwardcompactness} .............., Forward compactness, Conference on Summability and Applications, Shawnee State University, November 6, 2009 November 8, (2009), http://webpages.math.luc.edu/~mgb/ShawneeConference/Articles/HuseyinCakalliOhio.pdf .

bibitem{BurtonColeman} D.Burton, and J.Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly, textbf{117}, 4, (2010), 328-333.

bibitem{KizmazOncertainsequencespaces} H.Ki zmaz, On Certain Sequence Spaces, Canad. Math. Bull., textbf{24}, 2, (1981), 169-176,

bibitem{ConnorandGrosse} J.Connor, K.-G.Grosse-Erdmann, Sequential definitions of continuity for real functions, Rocky Mountain J. Math. , textbf{33}, 1, (2003), 93-121, MR textbf{2004e}:26004.

bibitem{FDikMDikandCanak} F.Dik, M.Dik, and I.Canak, Applications of subsequential Tauberian theory to classical Tauberian theory. Appl. Math. Lett. textbf{20}, 8, (2007), 946-950, MR textbf{2008b}:40007.

bibitem{Vallin} R.W.Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, Acta Math. Univ. Comenianae, textbf{25}, 1, (2011), 71-78.

bibitem{VallinandCakalli} R.W.Vallin and H.c{C}akalli, Addendum to Creating slowly oscillating sequences and slowly oscillating continuous functions, Acta Math. Univ. Comenianae, textbf{25}, 1, (2011), 77.

bibitem{CakalliSlowlyoscillatingcontinuity} H.c{C}akalli, Slowly oscillating continuity, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2008, Article ID 485706, (2008), MR textbf{2009b}:26004

bibitem{DikandCanak} M.Dik, and I.Canak, New Types of Continuities, Abstr. Appl. Anal. Hindawi Publ. Corp., New York, ISSN 1085-3375, Volume 2010, Article ID 258980, (2010), doi:10.1155/2010/258980

bibitem{CakalliNewkindsofcontinuities} H.c{C}akalli, New kinds of continuities, Comput.Math. Appl, textbf{61}, {2011}, 960-965.

bibitem{CakalliSequentialdefinitionsofcompactness} .............., Sequential definitions of compactness, Appl. Math. Lett., textbf{21} , 6, (2008), 594-598, MR textbf{2009b}:40005.

bibitem{CakalliOnGcontinuity} .............., On \$G\$-continuity, Comput. Math. Appl., textbf{61}, (2011), 313-318.

bibitem{BoosClassicalmodernmethodsinsummability} J.Boos Classical and modern methods in summability, Oxford University Press, New York, (2000).

bibitem{CakalliAstudyonstatisticalconvergence} H.c{C}akalli, A study on statistical convergence, Funct. Anal. Approx. Comput., textbf{1}, no. 2, (2009), 19-24, MR2662887.

bibitem{CakallistatisticalquasiCauchysequences} H.c{C}akalli, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling, textbf{54}, No:5-6, (2011), 1620-1624, doi: 10.1016/j.mcm.2011.04.037

bibitem{CakalliStatisticalwardcontinuity} ............., Statistical ward continuity, Appl. Math. Lett., 24, No:10, (2011), 1724-1728, doi:10.1016/j.aml.2011.04.029

bibitem{CakalliPseudowardcontinuity} H.c{C}akalli, Pseudo quasi-Cauchy sequences, submitted.

bibitem{CakDikCan} H.c{C}akalli, I.Canak and M.Dik, \$delta\$-quasi-Slowly oscillating continuity, Appl. Math. Comput. textbf{216}, 2010, 2865-2867.

bibitem{CakalliandPratul} H.c{C}akalli, and Pratulananda Das, Fuzzy compactness via summability, Appl. Math. Lett., textbf{22}, No: 11, November (2009), 1665-1669, MR textbf{2010k}:54006.

bibitem{SalatTripathyZimon}T. Sal'at, B.C. Tripathy, M. Zimon, On some properties of \$I\$-convergence, Tatra Mt. Math. Publ. textbf{28}(2004), 279-286.

### Refbacks

• There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)