Abdelbasset Felhi

DOI Number
First page
Last page


In this paper, we introduce the class of generalized (α, φ, ψ)-proximal
contraction non-self-maps in semi-metric spaces. For such maps, we provide
sufficient conditions ensuring the existence and uniqueness of best proximity
points by using the concept of -proximal admissible mapping. As applications, we infer best proximity point and xed point results for mappings in partially ordered semi-metric spaces. The presented results generalize and improve various known results from best proximity and fixed point theory.


semi-metric space; best proximity point; fixed point; generalized (α,\phi,\psi$)- proximal maps


semi-metric space, best proximity point, fixed point, generalized($\alpha,\phi,\psi$)-proximal maps.

Full Text:



M. Aamri, A. Bassou, D. El Moutawakil: Common fixed points for weakly compatible maps in symmetric spaces with applications to probabilistic spaces. Appl. Math. E-Notes 5 (2005), 171-175.

M. Aamri, D. El Moutawakil: Common fixed points under contractive conditions in symmetric spaces. Appl. Math. E-Notes 3 (2003), 156-162.

I. D. Arandelović, D. J. Kečkić: Symmetric spaces approach to some fixed point results. Nonlinear Anal. 75 (2012), 5157-5168.

A. Aliouche: A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type. J. Math. Anal. Appl. 322 (2006), 796-802.

S. Alshehri, I. Arandelović, N. Shahzad: Symmetric spaces and fixed points of generalized contractions. Abstr. Appl. Anal. 1 (2014), 8 pages.

H. Aydi, A. Felhi: Best proximity points for cyclic Kannan-Chatterjea-Cirić type contractions on metric-like spaces. J. Nonlinear Sci. Appl. 9 (2016), 2458-2466.

H. Aydi, A. Felhi, E. Karapinar: On common best proximity points for generalized − -proximal contractions. J. Nonlinear Sci. Appl. 9 (2016), 2658-2670.

S. Basha, P. Veeramani: Best approximations and best proximity pairs. Acta Sci. Math. (Szeged). 63 (1997), 289–300.

S. Basha, P. Veeramani: Best proximity pair theorems for multifunctions with open fibres. J. Approx. Theory. 103 (2000), 119–129.

E. W. Chittenden: On the equivalence of ecart and voisinage. Trans. Amer. Math. Soc. 18 (1917), 161-166.

M. Cicchese: Questioni di completezza e contrazioni in spazi metrici generalizzati. Boll. Un. Mat. Ital. 13-A (1976), 175179.

A. Felhi, H. Aydi: Best proximity points and stability results for controlled proximal contractive set valued mappings. Fixed Point Theory Appl. 2016 (2016), 2016:22.

F. Giannessi, A. Maugeri, P. M. Pardalos: Equilibrium Problems: nonsmooth optimization and variational inequality models. Nonconvex Optim. App. 58 (2004).

T. L. Hicks, B. E. Rhoades: Fixed point theory in symmetric spaces with applications to probabilistic spaces. Nonlinear Anal. Theory, Methods Appl. 36 (1999), 331-334.

M. Imdad, J. Ali, L. Khan: Coincidence and fixed points in symmetric spaces under strict contractions. J. Math. Anal. Appl. 320 (2006) 352-360. corrections: J. Math. Anal. Appl. 329 (2007), 752.

J. Jachymski, J. Matkowski, T. Swiatkowski: Nonlinear contractions on semimetric spaces. J. Appl. Anal. 1 (1995), 125-134.

M. Jleli, E. Karapinar, B. Samet: Best proximity points for generalized − - proximal contractive type mappings. Journal Appl.Math. 2013, Article ID 534127.

S. Karpagam, S. Agrawal: Best proximity points theorems for cyclic Meir-Keeler contraction maps. Nonlinear Anal. 74 (2011), 1040–1046.

W. K. Kim, S. Kum, K. H. Lee: On general best proximity pairs and equilibrium pairs in free abstract economies. Nonlinear Anal. 68 (2008), 2216–2227.

Q. Kiran, M. U. Ali, T. Kamran, E. Karapinar: Existence of best proximity points for controlled proximal contraction. Fixed Point Theory Appl. 2015 (2015), 2015:207.

W. A. Kirk, S. Reich, P. Veeramani: Proximinal retracts and best proximity pair theorems. Numer. Funct. Anal. Optim. 24 (2003), 851–862.

K. Menger: Untersuchungen ber allgemeine. Math. Annalen 100 (1928), 75-163.

D. Mihe: A note on a paper of Hicks and Rhoades. Nonlinear Anal. Theory, Methods Appl. 65 (2006), 1411-1413.

C. Mongkolkeha, P. Kumam: Best proximity point Theorems for generalized cyclic contractions in ordered metric Spaces. Journal of Optimization Theory and Applications. 155 (2012), 215–226.

H. K. Nashine, P. Kumam, C. Vetro: Best proximity point theorems for rational proximal contractions. Fixed Point Theory Appl. 2013, 2013:95.

N. Shahzad, M. A. Alghamdi, S. Alshehri, I. Arandelovi´c: Semi-metric spaces and fixed points of −'-contractive maps. J. Nonlinear Sci. Appl. 9 (2016), 3147-3156.

P. M. Pardalos, T. M. Rassias, A. A. Khan: Equilibrium problems: nonlinear analysis and variational inequality problems in honor of George Isac. Springer Optim Appl. 35 (2010).

B. Samet, C. Vetro, P. Vetro: Fixed point theorems for - -contractive type mappings Nonlinear Anal. 75 (2012), 2154–2165.

W. A. Wilson: On semi-metric spaces. Amer. J. Math. 53 (1931), 361-373.

J. Zhang, Y. Su, Q. Cheng: A note on ”A best proximity point theorem for Geraghty- contractions”. Fixed Point Theory Appl. (2013), 2013:99.

J. Zhu, Y. J. Cho, S. M. Kang: Equivalent contractive conditions in symmetric spaces. Comp. Math. Appl. 50 (2005), 1621-1628.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)