### A COMMON RANDOM FIXED POINT THEOREM OF RATIONAL INEQUALITY IN POLISH SPACES WITH APPLICATION

**DOI Number**

**First page**

**Last page**

#### Abstract

In this paper, we prove a new common random fixed point theorem for a pair of random operators satisfying random F-contraction of rational inequality in polish spaces. An application to a system of random nonlinear integral equations is discussed. Finally, we give some examples to verify our results.

#### Keywords

#### Keywords

#### Full Text:

PDF#### References

R. A. Rashwan and H. A. Hammad, Random ﬁxed point theorems with an application to a random nonlinear integral equation, Journal of Linear and Topological Algebra, 5, (2016), 119-133.

R. A. Rashwan and H. A. Hammad, Random common ﬁxed point theorem for random weakly subsequentially continuous generalized contractions with application, Int. J. Pure Appl. Math., 109, (2016), 813-826.

M. U. Ali, T. Kamran and M. Postolache: Solution of Volterra integral inclusion in b-metric spaces via a new fixed point theorem. Nonlinear Analysis: Modelling and Control, 22 (2017), 17–30.

I. Arandjelović, Z. Radenović and S. Radenović: Boyd-Wong-type common fixed point results in cone metric spaces. Appl. Math Comput., 217 (2011), 7167–7171.

S. Banach: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math., 3 (1922), 133–181.

R. Batra and S. Vashistha: Fixed points of an F-contraction on metric spaces with a graph. Int. J. Comput. Math., 91 (2014), 1–8.

R. Batra, S. Vashistha and R. Kumar: A coincidence point theorem for F-contractions on metric spaces equipped with an altered distance. J. Math. Comput. Sci., 4 (2014), 826-833.

A. T. Bharucha-Reid: Random Integral equations. Mathematics in Science and Engineering, 96, Academic Press, New York, (1972).

D. W. Boyd and J. S. W. Wong: On nonlinear contractions. Proc. Amer. Math. Soc., 20 (1969), 458–464.

M. Cosentino and P. Vetro: Fixed point results for F-contractive mappings of Hardy-Rogers-type. Filomat, 28 (2014), 715–722.

O. Hanš: Reduzierende zuf˘ allige transformationen. Czechoslov. Math. J., 7 (1957), 154-158.

S. Itoh: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl., 67 (1979), 261-273.

M. C. Joshi and R. K. Bose: Some topics in nonlinear functional analysis. Wiley Eastern Ltd., New Delhi, (1984).

T. Kamran, M. Postolache, M.U. Ali and Q. Kiran: Feng and Liu type F-contraction in b-metric spaces with an application to integral equations. Journal of Mathematical Analysis, 7 (2016), 18–27.

E. Rakotch: A note in contractive mappings. Proc. Amer. Math. Soc., 13 (1962), 459–465.

R. A. Rashwan and D. M. Albaqeri: A common random fixed point theorem and application to random integral equations. Int. J. Appl. Math. Reser., 3 (2014), 71–80.

R. A. Rashwan and H. A. Hammad: Random fixed point theorems with an application to a random nonlinear integral equation. Journal of Linear and Topological Algebra, 5 (2016), 119-133.

R. A. Rashwan and H. A. Hammad: Random common fixed point theorem for random weakly subsequentially continuous generalized contractions with application. Int. J. Pure Appl. Math., 109 (2016), 813-826.

N. Shahzad: Random fixed points of discontinuous random maps. Math. Comput. modelling, 41 (2005), 1431-1436.

N. Shahzad and S. Latif: Random fixed points for several classes of 1-Ball-contractive and 1-set-contractive random maps. J. Math. Anal. Appl., 237 (1999), 83-92.

A. Skorohod: Random linear operators. Reidel, Boston, (1985).

A. Spacek: Reduzierende zuf˘ allige transformationen. Zufallige Gleichungen, 5 (1955), 462-466.

E. Tarafdar: An approach to fixed-point theorems on uniform spaces. Trans Amer. Math Soc., 191 (1974), 209–225.

D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Appl., 2012 (2012), 1–6.

DOI: https://doi.org/10.22190/FUMI1705703R

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)