SOME TYPES OF η-RICCI SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS
Abstract
In this paper we study some types of η-Ricci solitons on Lorentzian
para-Sasakian manifolds and we give an example of η-Ricci solitons on 3-
dimensional Lorentzian para-Sasakian manifold. We obtain the conditions of η-
Ricci soliton on ϕ-conformally flat, ϕ-conharmonically flat and ϕ-projectively
flat Lorentzian para-Sasakian manifolds, the existence of η-Ricci solitons implies that (M,g) is η-Einstein manifold. In these cases there is no Ricci soliton
on M with the potential vector field
Keywords
Keywords
Full Text:
PDFReferences
-C.S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds, Acta Math. Academiae Paedagogicae Nyíregyháziensis 28 (2012),no.1,59-68.
-C.S. Bagewadi, G. Ingalahalli and S.R. Ashoka, A Study on Ricci Solitons in Kenmotsu Manifolds, ISRN Geometry, vol. 2013, Article ID 412593,(2013), 1-6.
-C.L. Bejan and M. Crasmareanu, Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry, Anal. Global Anal. Geom., DOI: 10.1007/s10455-014-9414-4.
-A.M. Blagaa, η-Ricci Solitons on Para-Sasakian Manifolds, Balkan J. Geom. Appl. 20 (2015),no.1,1-13.
-A.M. Blagaa, η-Ricci Solitons on Lorentzian Para-Sasakian Manifolds, Filomat 30 (2016),no. 2, 489-496.
-J.L. Cabrerizo, L.M. Fernández, M. Fernández and G. Zhen, The structure of a class of K-contact manifolds, Acta Math. Hungar, 82 (1999),no. 4, 331-340.
-C. Călin and M. Crasmareanu, η-Ricci solitons on Hopf hypersurfaces in complex space forms, Revue Roumaine de Mathematiques pures et appliques 57 (2012), no.1, 55-63.
-G. Calvaruso and D. Perrone, Geometry of H-paracontact metric manifolds, arxiv:1307.7662v1.2013.
-J.T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2009), no. 2, 205-212.
-O. Chodosh and F.T.-H. Fong, Rotational symmetry of conical Kahler-Ricci solitons, arxiv:1304.0277v2.2013.
-B. Chow, P. Lu and L. Ni, Hamilton's Ricci Flow, Graduate Studies in Mathematics, AMS, Providence, RI, USA 77 (2006).
-R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Di . Geom. 17 (1982), no. 2, 255-306.
-R.S. Hamilton, The Ricci flow on surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math. 71, American Math. Soc. 1988, 237-262.
-C. He and M. Zhu, The Ricci solitons on Sasakian manifolds, arxiv:1109.4407v2.2011.
-G. Ingalahalli and C.S. Bagewadi, Ricci solitons in α-Sasakian manifolds, ISRN Geometry, vol. 2012, Article ID 421384,(2012),1-13.
Y. Ishii: On conharmonic transformations. Tensor N.S, 7 (1957), 73-80.
-K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci, 12 (1989),no. 2,151-156.
-K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor N. S. 47 (1988),189-197.
-I. Mihai, A.A. Shaikh and U.C. De, On Lorentzian para-Sasakian manifolds, Rendiconti del Seminario Matematico di Messina, Serie II (1999).
C. Ozgur: -conformally flat Lorentzian para-Sasakian manifolds. Radovi Mathematicki, 12, (2003), 99-106.
-M.M. Tripathi, Ricci solitons in contact metric manifolds, http://arxiv.org/abs/0801.4222.
-S.K. Yadav and D.L. Suthar, Some global properties of LP-Sasakian manifolds, Fundamental Journal of Mathematics and Mathematical Sciences, 3 (2015), no. 1, 69-82.
K. Yano and M. Kon: Structures on manifolds. Series in Pure Mathematics, World Scientific Publishing Co., Singapore 3 (1984).
-G. Zhen, On conformal symmetric K-contact manifolds, Chinese Quart. J. of Math, 7 (1992),5-10.
-G. Zhen, J.L. Cabrerizo, L.M. Fernández, M. Fernández, On ξ-conformally flat contact metric manifolds, Indian J. Pure Appl. Math, 28 (1997), 725-734.
DOI: https://doi.org/10.22190/FUMI1802217S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)