Pradip Majhi, Gopal Ghosh

DOI Number
First page
Last page


We consider para-Sasakian manifolds satisfying the curvature conditions $P\cdot R=0$, $P\cdot Q=0$ and $Q\cdot P=0$, where $R$ is the Riemannian curvature tensor, $P$ is the projective curvature tensor and $Q$ is the Ricci operator.


para-Sasakian manifold, Riemannian curvature tensor, Ricci operator, Riemannian manifold

Full Text:



D. E. Blair., Contact manifolds in Riemannian geometry , Lecture notes in Math., Springer-Verlag, 509(1976).

D. E. Blair., Riemannian geometry of contact and Sympletic Manifolds , Progress in Math. , Birkh¨auser, Boston, 203(2002).

A. L. Besse., Einstein manifolds, Springer-verlag, Berlin-Heidelberg (1987).

G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math., 55(2011), 697-718.

G. Calvaruso., A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys. 98(2015), 1-12.

B. Cappelletti Montano., A. Carriazo., V. Martin-Molina., Sasaki-Einstein and para-Sasaki-Einstein metrics form (, μ)-structures, J. Geom. Phys., 73(2013), 20-36.

B. Cappelletti-Montano, Bi-paracontact structures and Legendre foliations, Kodai Math. J. 33(2010), 473-512.

B. Cappelletti-Montano., I. K¨upeli Erken., C. Murathan, Nullity conditions in paracontact geometry, Diff. Geom. Appl. 30(2012), 665-693.

B. Cappelletti-Montano., L. Di Terlizzi., Geometric structures associated to a contact metric (k, μ)-space, Pacific J. Math. 246(2010), 257-292.

R. Deszcz., L. Verstraelen and S. Yaprak, Warped products realizing a certain conditions of pseudosymmetry type imposed on the Weyl curvature tensor, Chin. J. Math. 22(1994), 139-157.

U. C. De., A. Sarkar, On a type of P-Sasakian manifolds. Math. Rep., 11(61) (2009), 139-144.

D. Tarafdar., U. C. De, Second order parallel tensors on P-Sasakian manifolds, Northeast. Math. J. 11(1995), 260-262.

U. C. De.,and D. Tarafdar,, On a type of P-Sasakian manifold, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 38(1992), 307-312.

S. Kaneyuki., M. Kozai, Paracomplex structure and affine symmetric spaces, Tokyo J. of Math., 8(1985), 301-318.

S. Kaneyuki., F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99(1985), 173-187.

V. Martin-Molina., Paracontact metric manifolds without a contact metric counterpart, Taiwanese J. of Math., 19(2015), 175-191.

V. Martin-Molina, Local classification and examples of an important class of paracontact metric manifolds, Filomat, 29(2015), 507-515.

K. Matsumoto., I. Mihai., On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47(1988), 189-197.

I. Mihai., L. Nicolescu., and R. Rosca, On exact 2-para-Sasakian manifolds, Rend. Circ. Mat. Palermo (2)48(1999), 223-236.

K. Matsumoto., S. Ianus., and I. Mihai, On P-Sasakian manifolds which admit certain tensor fields, Publ. Math. Debrecen 33(1986), 61-65.

G. Soos, Uber die geodatischen Abbildungen von Riemannaschen Raumen auf projektiv symmetrische Riemannasche Rauume, Acta. Math. Acad. Sci. Hunger., 9(1958), 359-361.

K. Yano., M. Kon, Structures on manifolds , Series in Pure Mathematics, World Scientific Publishing Co., Singapore 3(1984).

S. Zamkovoy, Canonical connection on paracontact manifolds, Ann. Glob. Anal. Geom., 36(2009), 37-60.

S. Zamkovoy., S., V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Inform., 100(2011), 27-34.

DOI: https://doi.org/10.22190/FUMI1705781M


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)