Gurninder Sandhu, Deepak Kumar, Didem K. Camci, Neset Aydin

DOI Number
First page
Last page


The present paper deals with the commutativity of an associative ring $R$ and a unital Banach Algebra $A$ via derivations. Precisely, the study of multiplicative (generalized)-derivations $F$ and $G$ of semiprime (prime) ring $R$ satisfying the identities $G(xy)\pm [F(x),y]\pm [x,y]\in Z(R)$ and $G(xy)\pm [x,F(y)]\pm [x,y]\in Z(R)$ has been carried out. Moreover, we prove that a unital prime Banach algebra $A$ admitting continuous linear generalized derivations $F$ and $G$ is commutative if for any integer $n>1$ either $G((xy)^{n})+[F(x^{n}),y^{n}]+[x^{n},y^{n}]\in Z(A)$ or $G((xy)^{n})- [F(x^{n}),y^{n}]-[x^{n},y^{n}]\in Z(A)$.


Semiprime ring, Prime ring, Multiplicative (generalized)- derivation, Generalized derivation, unital prime Banach Algebra

Full Text:



A. Ali, B. Dhara, S. Khan and F. Ali: Multiplicative (generalized)-derivations

and left ideals in semiprime rings. Hacettepe J. Math. Stat. 44(6) (2015), 1293–1306.

S. Ali and A. N. Khan: On commutativity of Banach Algebras with derivations. Bull. Aust. Math. Soc. 91(2015), 419–425.

A. Ali, D. Kumar and P. Miyan: On generalized derivations and commutativity

of prime and semiprime rings. Hacettepe J. Math. Stat. 40(3)(2011), 367–374.

M. Ashraf, A. Ali and S. Ali: Some commutativity theorems for rings with

generalized derivations. Southeast Asian Bull. Math. 31(2007), 415–421.

H. E. Bell and M. N. Daif: On drivations and commutativity in prime rings.

Acta Math. Hung. 66(4)(1995), 337–343.

H. E. Bell and W. S. Martindale III: Centralizing mappings of semiprime

rings. Canad. Bull. Math. 30(1987), 92–101.

D. K. Camci and N. Aydin: On multiplicative (generalized) -derivations in

semiprime rings, Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat. 66(1)(2017), 153–164.

M. N. Daif: When is a multiplicative derivation additive? Internat. J. Math.

Math. Sci. 14(3)(1991), 615–618.

M. N. Daif and H. E. Bell: Remarks on derivations on semiprime rings. Internat. J. Math. Math. Sci. 15(1)(1992), 205–206.

M. N. Daif and M. S. Tammam-El-Sayiad: Multiplicative generalized derivations which are additive. East-West J. Math. 9(1)(1997), 33–37.

B. Dhara and S. Ali: On multiplicative (generalized)- derivations in prime and semiprime rings. Aequations Math. 86(2013), 65–79.

H. Goldmann and P. Semrl ˇ : Multiplicative derivations on C(X). Monatsh.

Math. 121(3)(1996), 189–197.

I. N. Herstein: Rings with involutions, The University of Chicago Press,

Chicago, USA, (1976).

M. Hongan: A note on semiprime rings with derivations. Inter. J. Math. and

Math. Sci. 20(2) (1997), 413–415.

S. Khan: On semiprime rings with multiplicative (generalized) -derivations. Beitr Algebra Geom. 57(1)(2016), 119–128.

D. Kumar and G. S. Sandhu: On multiplicative (generalized) -derivations in

semiprime rings. Inter. J. Pure and App. Math. 106(1)(2016), 249–257.

T. K. Lee and W. K. Shiue: A result on derivations with Engel conditions in

prime rings. South East Asian Bull. Math. 23(1999), 437–446.

W. S. Martindale III: When are multiplicative maps additive. Proc. Amer.

Math. Soc. 21(1969), 695–698.

E. C. Posner: Derivations in prime rings. Proc. Amer. Math. Soc. 8(1957),


M. A. Qadri, M. S. Khan and N. Rehman: Generalized derivations and commutativity of prime rings. Indian. J. Pure Appl. Math. 34(9)(2003), 1393–1396.

G. S. Sandhu and D. Kumar: Derivable mappings and commutativity of associative rings. Italian J. Pure Appl. Math. 40(2018), 376–393.

R. K. Sharma and B. Prajapati: Generalized derivations and commutativity of

prime Banach algebras. Beitr Algebra Geom. 58(1)(2017), 179–187.

S. K. Tiwari, R. K. Sharma and B. Dhara: Identities related to generalized

derivations on ideals in prime rings. Beitr Algebra Geom. 57(4)(2016), 809–821.

B. Yood: On commutativity of unital Banach Algebra. Bull. Lond. Math. Soc.

(3)(1991), 278–280


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)