On a Subspace of a Special Finsler Space

Vivek Kumar Pandey, P. N. Pandey

DOI Number
First page
Last page


The present paper deals with the properties of a Finsler space  whose metric is obtained from the metric of another Finsler space  defined over the same manifold, with the help of a contravariant vector  satisfying the condition , where ,  and  are metric function, angular metric tensor and Cartan tensor of  respectively and  is a scalar function. Apart from obtaining expressions for different geometric objects of , a subspace of  is studied. Apart from other results for the subspace of , certain conditions for a subspace of   to be totally geodesic and projectively flat have been obtained. 


Finsler space; subspace; projective change; totally geodesic subspace; projectively flat space


Finsler space, subspace, projective change, totally geodesic subspace, projectively flat space.

Full Text:



B. N. PRASAD: On the torsion tensors Rhjk and Phjk of Finsler spaces with a metric ds = (gij(dx)dxidxj)1=2 + bi(x; y)dxi, Indian J. Pure Appl. Math., 21(1) (1990) 27-39.

H. IZUMI: Conformal transformations of Finsler spaces II. An h-conformally flat Finsler space, Tensor N. S., 34 (1980) 337-359.

H. RUND: The differential geometry of Finsler spaces, Springer-Verlag, Berlin/Gottingen/Heidelberg, 1959.

H. YASUDA: A theory of subspaces in a Finsler space, Ann. Rep. Asahikawa Med. Coll., 8 (1987) 1-43.

L. BERWALD: Uber Finslersche und Cartanche geometrie IV. Projektivkrummung allgemeiner affiner Raume und Finslerche Raume skalarer Krummung, Ann. of Math., 48(2) (1947) 755-781.

M. K. GUPTA AND P. N. PANDEY: On subspaces of a Finsler space with a

special metric, Bull. Ald. Math. Soc., 23(2)(2008) 263-272.

M. KITAYAMA: Subspaces given by a projective Randers change, Tensor N. S., 66 (2005) 185-196.

MAKOTO MATSUMOTO: Projective changes of a Finsler metrics and projectively flat Finsler spaces, Tensor N. S., 34 (1980) 303-315.

MAKOTO MATSUMOTO: Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, 1986.

P. N. PANDEY: On a Finsler space of zero projective curvature, Acta Math. Acad. Sci. Hungar., 39(4) (1982) 387-388.

S. KIKUCHI: On the theory of subspace in a Finsler space, Tensor N. S., 2 (1952) 67-79.

T. SAKAGUCHI: Subspaces in Finsler spaces, Memorirs of the National Defence Academy, Japan 28 (1988) 1-37.


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)