### NONLINEAR SINGULAR STURM-LIOUVILLE PROBLEMS WITH IMPULSIVE CONDITIONS

**DOI Number**

**First page**

**Last page**

#### Abstract

In this paper, we consider a non-linear impulsive Sturm-Liouville problem on semiinfinite intervals in which the limit-circle case holds at infinity for THE Sturm-Liouville expression. We prove the existence and uniqueness theorems for this problem.

#### Keywords

#### Keywords

#### Full Text:

PDF#### References

R. P. Agarwal and D. O’Regan: Boundary value problems of nonsingular type on the semi-infinite interval, Tohoku Math. Journal, 51, 3 (1999), 391–397.

R. P. Agarwal and D. O’Regan: Multiple nonnegative solutions for second order impulsive differential equations, Appl. Math. Comput., 114 (2000), 51-59.

D. D. Bainov and P. S. Simeonov: Impulsive Differential Equations: Periodic Solutions and Applications, Longman: Harlow, 1993.

D. D. Bainov and P. S. Simeonov: Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientific: Singapore, 1995.

D. D. Bainov and P. S. Simeonov: Oscillation Theory of Impulsive Differeential Equations, International Publications: Orlando, 1998.

M. Benchohra, J. Henderson and S. Ntouyas: Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation: New York, 2006.

W. Ding and M. Han: Periodic boundary value problem for the second order impulsive functional differential equations, Appl. Math. Comput., 155, 3 (2004), 709-726.

N. Dunford and J. T. Schwartz: Linear Operators. Part II, Interscience, New York, 1964.

M. Feng and D. Xie: Multiple positive solutions of multi-point boundary value problem for second order impulsive differential equations, J. Comput. Appl. Math., 223, 1 (2009), 438–448.

D. Guo: Second order impulsive integro-differential equations on unbounded domains in Banach spaces, Nonlinear Analysis: Theory Meth. Appl., 35, 4 (1999), 413–423.

G. Sh. Guseinov and I. Yaslan: Boundary value problems for second order nonlinear differential equations on infinite intervals. J. Math. Anal. Appl., 290 (2004), 620–638.

S. G. Hristova and D. D. Bainov: Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations, J. Math. Anal. Appl., 197, 1 (1996), 1-13.

T. Jankowski: Positive solutions to second order four-point boundary value problems for impulsive differential equations, Appl. Math. Comput., 202, 2 (2008), 550–561.

T. Jankowski: Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments, Appl. Math. Comput., 197, 1 (2008), 179–189.

T. Jankowski: Existence of solutions for second order impulsive differential equations with deviating arguments, Nonlinear Analysis: Theory Meth. Appl., 67, 6 (2007), 1764–1774.

A. N. Kolmogorov and S. V. Fomin: Introductory Real Analysis, Translated by R.A. Silverman, Dover Publications, New York, 1970.

M. A. Krasnosel’skii: Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhteoretizdat, Moscow, 1956, English transl. Pergamon Press, New York, 1964.

V. Lakshmikantham D. D. Bainov and P. S. Simeonov: Theory of Impulsive Differential Equations. World Scientific: Singapore, 1989.

I. K. C. Leung and P. N. Shivakumar: On the eigenvalue problem −y′′ + f (x) y = y on a semi infinite interval. Math. Comput. Mod., 46 (2007), 316–330.

B. M. Levitan and I. S. Sargsjan: Sturm-Liouville and Dirac Operators. Mathematics and its Applications (Soviet Series, translated from the Russian), Kluwer Academic Publishers Group, Dordrecht, 1991.

J. Li and J. Shen: Existence of positive solution for second-order impulsive boundary value problems on infinity intervals. Bound. Value Probl., vol. 2006, Article ID 14594, (2006), 11 pages.

J. Li and J. J. Nieto: Existence of positive solutions for multipoint boundary value problem on the half-line with impulses, Bound. Value Probl., vol. 2009, Article ID 834158, (2009), 12 pages.

H. Lian and W. Ge: Existence of positive solutions for Sturm-Liouville boundary value problems on the half-line, J. Math. Anal. Appl., 321 (2006), 781–792.

H. Lian, H. Pang and W. Ge: Triple positive solutions for boundary value problems on infinite intervals, Nonlinear Anal., 67 (2007) 2199–2207.

X. Lin and D. Jiang: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations, J. Math. Anal. Appl., 321, 2 (2006), 501–514.

L. Liu and F. Y. Li: Multiple positive solution of nonlinear two-point boundary value problems, J. Math. Anal. Appl., 203 (1996), 610-625.

X. Liu and D. Guo: Periodic Boundary value problems for a class of second-Order impulsive integro-differential equations in Banach spaces, J. Math. Anal. Appl., 216, 1 (1997), 284-302.

Y. Liu: Boundary value problems for second order differential equations on unbounded domains in a Banach space, Appl. Math. Comput., 135, 2-3 (2003), 569–583.

R. Ma: Existence of positive solutions for second-order boundary value problems on infinity intervals. Appl. Math. Letters, 16, 1 (2003), 33–39.

I. Rachunkova and J. Tomecek: Impulsive BVPs with nonlinear boundary conditions for the second order differential equations without growth restrictions, J Math Anal Appl., 292, 2 (2004), 525-539.

A. M. Samoilenko and N. A. Perestyuk: Impulsive Differential Equations, World Scientific: Singapore, 1995.

E. C. Titchmarsh: Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I. Second Edition, Clarendon Press, Oxford, 1962

Z. Wei: Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces, J Math Anal Appl., 195, 1 (1995), 214-229.

DOI: https://doi.org/10.22190/FUMI1903439A

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)