İmdat İşcan, Cuma Altunsoy, Huriye Kadakal

DOI Number
First page
Last page


In this study, some inequalities of Hermite Hadamard type obtained for p-convex functions are given for Lipschitz mappings. Also, some applications for special means have been given.


Hermite Hadamard inequalities; $p$-convex functions; convex functions.

Full Text:



bibitem{DCK00} S.S. DRAGOMIR, Y.J. CHO and S.S. KIM: textit{Inequalities

of Hadamard's type for Lipschitzian mappings and their applications}.

Journal of Mathematical Analysis and Applications, textbf{245}(2), 489-501,

bibitem{DP02} S.S. DRAGOMIR, C.E.M. PEARCE: textit{Selected Topics on

Hermite-Hadamard Inequalities and Its Applications.} RGMIA Monograph, 2002.

bibitem{D02} S.S. DRAGOMIR: textit{On Some New inequalities of

Hermite-Hadamrd Type for }$m$textit{-Convex Functions}. Tamkang J. of

Math., textbf{33}(1), 45-55, 2002.

bibitem{H93} J. HADAMARD: textit{Etude sur les proprietes des fonctions

entieres en particulier d'une fonction consideree par Riemann.} J. Math.

Pures Appl. textbf{58}, 171-215, 1893.

bibitem{I14} .{I}. .{I}c{S}CAN: textit{Hermite-Hadamard type

inequalities for harmonically convex functions.} Hacettepe Journal of

Mathematics and Statistics, textbf{43}(6), 935-942, 2014.

bibitem{I14b} .{I}. .{I}c{S}CAN: textit{New general integral

inequalities for Lipschitzian functions via Hadamard fractional integrals},

International Journal of Analysis, volume textbf{2014}, Article ID 353924,

, 2014.

bibitem{I16} .{I}. .{I}c{S}CAN: textit{Ostrowski type inequalities for }%

$p$textit{-convex functions}, New Trends in Mathematical Sciences, textbf{4%

}(3), 140-150, 2016.

bibitem{I16b} .{I}. .{I}c{S}CAN: textit{Hadamard-type and Bullen-type

inequalities for Lipschitzian functions via fractional integrals.}

Mathematical Sciences and Applications E-Notes, textbf{4}(1), 77-87, 2016.

bibitem{IAK19} .{I}. .{I}c{S}CAN, C. ALTUNSOY and M. KADAKAL: textit{%

Some New Inequalities for Lipschitz Functions via a Functional.} G"{U}%

FBED/GUSTIJ, textbf{9}(2), 301-306, 2019.

bibitem{IKA18} .{I}. .{I}c{S}CAN, M. KADAKAL and A. AYDIN: textit{Some

new integral inequalities for Lipschitzian functions.} An International

Journal of Optimization and Control: Theories & Applications, textbf{8}%

(2), 259-265, 2018.

bibitem{KL18} A. KASHURI and R. LIKO: textit{Some }$k$textit{-fractional

integral inequalities of Hermite-Hadamard type concerning twice

differentiable generalized relative semi-(}$r;m,h_{1},h_{2},$textit{%

)-preinvex mappings.} Commun. Optim. Theory 2018, Article ID 6, 2018.

bibitem{KST06} A.A. K.{I}LBAc{S}, H.M. SRIVASTAVA and J. TRUJILLO:

textit{Theory and applications of fractional differential equations.}

Elsevier, Amsterdam, 2006.

bibitem{KI17a} M. KUNT and .{I}. .{I}c{S}CAN: textit{On new

Hermite-Hadamard-Fejer type inequalities for }$p$textit{-convex functions

via fractional integrals.} Communication in Mathematical Modeling and

Applications, textbf{2}(1), 1-15, 2017.

bibitem{KI17b} M. KUNT and .{I}. .{I}c{S}CAN: textit{%

Hermite-Hadamard-Fejer type inequalities for }$p$textit{-convex functions.}

Arab J. Math. Sci., textbf{23}(2), 215-230, 2017.

bibitem{KI17c} M. KUNT and .{I}. .{I}c{S}CAN: textit{Hermite-Hadamard

type inequalities for }$p$textit{-convex functions via fractional integrals.%

} Moroccan J. Pure Appl. Anal., textbf{3}(1), 22-35, 2017.

bibitem{KI18} M. KUNT and .{I}. .{I}c{S}CAN: textit{%

Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions via

Fractional Integrals.} Iranian Journal of Science and Technology Transaction

A-Science, textbf{42}(4), 2079-2089, 2018.

bibitem{LDM15} M.A. LAT.{I}F, S.S. DRAGOMIR and E. MOMANIAT: textit{Some

Fejer type integral inequalities for geometrically-arithmetically-convex

functions with applications.} RGMIA Research Report Collection, textbf{18},

Article 25, 18 pp., 2015.

bibitem{N00} C.P. NICULESCU: textit{Convexity according to the geometric

mean.} Math. Inequal. Appl., textbf{3}(2), 155-167, 2000.

bibitem{NNI17} M.A. NOOR, K.I. NOOR and S. IFTIKHAR: textit{Inequalities

via strongly p-harmonic log-convex functions.} J. Nonlinear Funct. Anal.

textbf{2017}, Article ID 20, 2017.

bibitem{NNS17} M.A. NOOR, K.I. NOOR, F. SAFDAR: textit{Integral

inequalities via generalized (}$alpha ,m$textit{)-convex functions.} J.

Nonlinear Funct. Anal. textbf{2017}, Article ID 32, 2017.

bibitem{PPT92} J. PEv{C}ARI'{C}, J., F. PROSCHAN and Y.T. TONG: textit{%

Convex Functions, Partial Orderings and Statistical Applications.} Academic

Press, Inc., 469 pp, Boston, 1992.

bibitem{RV73} A.W. ROBERTS and D.E. VARBERG: textit{Convex Functions.}

Academic Press, 300 pp, New York, 1973.

bibitem{S17} H.M. SRIVASTAVA and D. BANSAL: textit{Close-to-convexity of a

certain family of q-Mittag-Leffler functions.} J. Nonlinear Var. Anal.

textbf{1}, 61-69, 2017.

bibitem{YT99} G.S. YANG and K.L. TSENG: textit{On certain integral

inequalities related to Hermite-Hadamard inequalities.} J. Math. Anal.

Appl., textbf{239}, 180-187, 1999.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)