Fawaz Alharbi

DOI Number
First page
Last page


We  obtain  a list of all simple classes of singularities of curves  (irreducible  and reducible) in real spaces  of any dimension  with respect to the quasi  equivalence relation.


Singularities; curve; quasi equivalence relation.

Full Text:



V.I. Arnold, S.M. Gusein-Zade and A.N. Varchenko, Singularities of differentiable maps. Vol. I. Monographs in Mathematics 82, Birkh"auserBoston, Boston, 1985.

V. I. Arnol'd, Simple singularities of curves. Trudy Mat. Inst. Steklov. 226 (1999), 27-35; English transl., Proc. Steklov Inst. Math

F.D. Alharbi, Classification of singularities of functions and mappings via non standard equivalence relations. PhD Thesis, University of Liverpool, 2011, 256pp.

F.D. Alharbi, Quasi cusp singularities. The Journal of Singularities, volume 12(2015), 1--18.

P. A. Kolgushkin and R. R. Sadykov, Simple singularities of multigerms of curves. Revista Matematica Complutense ´(2001) vol. XIV, num. 2, 311-344

J.W. Bruce, T.J. Gaffney, Simple singularities of mappings $mathbf C,0 to mathbf C^ 2,0$. Proceedings of the London Mathematical Society (2) {bf 26} (1982), no. 3, 465--474.

J. Damon, The unfolding and determinacy theorems for subgroups of A and K/}. Proceedings of the American Mathematical Society {bf 50} (1984), no. 306, 233-254.

V.V. Goryunov, {em Singularities of projections of complete intersections/.} (Russian) Current problems in mathematics, Vol. 22, Itogi Nauki i Tekhniki, VINITI, Moscow, 1983, 167--206; English translation in Journal of Soviet Mathematics {bf 27} (1984), no. 3, 2785--2811.

V.M. Zakalyukin, Quasi-projections. Proceedings of the Steklov Institute of Mathematics 259 (2007), no. 1, 273--280.

DOI: https://doi.org/10.22190/FUMI1903537A


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)