### ON THE ROOTS OF TOTAL DOMINATION POLYNOMIAL OF GRAPHS, II

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

S. Akbari and S. Alikhani and Y. H. Peng: Characterization of graphs using domination polynomials. Eur. J. Combin. 31 (2010), 1714–1724.

S. Alikhani and N. Jafari: Some new results on the total domination polynomial of a graph. Ars Combin. In press. Available at http://arxiv.org/abs/1705.00826.

W. G. Bridges and R. A. Mena: Multiplicative cones- a family of three eigenvalue graph. Aequationes Math. 22 (1981), 208–214.

J. I. Brown and J. Tufts: On the roots of domination polynomials. Graphs Combin. 30 (2014), 527–547.

J. I. Brown and C. A. Hickmanand R. J. Nowakowski: On the location of roots of independence polynomials. J. Algebraic Combin. 19 (2004), 273–282.

E. R. Van Dam: Regular graphs with four eigenvalues. Linear Algebra Appl, 226/228 (1995), 139–162.

E. R. Van Dam: Graphs with few eigenvalues, An Interplay between Combinatorics and Algebra, Center Dissertation Series 20, Thesis, Tilburg University, 1996.

E. R. Van Dam: Nonregular graphs with three eigenvalues. J. Combin. Theory Ser, B 73 (1998), 101–118.

E. R. Van Dam and W. H. Haemers: Which graphs are determined by their spectrum?. Linear Algebra Appl, 373 (2003), 241–272.

M. Dod: The total domination polynomial and its generalization. In: Congressus Numerantium, 219 (2014), 207–226.

C. D. Godsil: Algebraic Combinatorics. Chapmanand Hall, NewYork. 1993.

F. Harary: On the group of the composition of two graphs. Duke Math. J.26 (1959), 29–36.

F. Harary: Graph Theory. Addison-Wesley, Reading, MA (1969).

O. J. Heilmann and E. H. Lieb: Theory of monomer-dimer systems, Comm. Math. Phys. 25 (1972), 190–232.

M. A. Henning and A. Yeo: Total domination in graphs . Springer Monographs in Mathematics, 2013.

N. Jafari and S. Alikhani: On the roots of total domination polynomial of graphs, J. Discrete Math. Sci. Crypt., https://doi.org/10.1080/09720529.2019.1616908.

M. Klin and M. Muzychuk: On graphs with three eigenvalues. Discrete Math. 189 (1998), 191–207.

H. Chuang and G. R. Omidi: Graphs with three distinct eigenvalues and largest eigenvalue less than 8. Linear Algebra Appl. 430 (2009), 2053–2062.

Z. Ryjáˇ cek and I. Schiermeyer: The flower conjecture in special classes of graphs. Discuss. Math. Graph Theory, 15 (1995), 179–184.

M. R. Oboudi: On the roots of domination polynomial of graphs. Discrete Appl. Math. 205 (2016), 126–131.

DOI: https://doi.org/10.22190/FUMI1904659A

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)