Gherbi Abdellah, Messirdi Bekkai, Messirdi Sanaa

DOI Number
First page
Last page


This paper has triple main objectives. The first objective is an analysis of
some auxiliary results on closedness and boundednes of linear relations. The seconde objective is to provide some new characterization results on semiclosed linear relations. Here it is shown that the class of semiclosed linear relations is invariant under finite and countable sums, products, and limits. We obtain some fundamental new results as well as a Kato Rellich Theorem for semiclosed linear relations and essentially interesting generalizations. The last objective concern semiclosed linear relation with closed range, where we have particularly established new characterizations of closable linear relation.


Semiclosed linear relation, Closable, Countable sums and products, Limits, Kato Rellich Theorem , Closed range.

Full Text:



bibitem{X} T. Alvarez, R.W. Cross, D. Wilcox, textit{ Multivalued Fredholm type operators with abstract generalised inverses},

J. Math. Anal. Appl. {bf 261} (2001), 403--417.

bibitem{alvarez1} T. Alvarez, D. Wilcox, textit{ The Baire property and the domain of iterates

of a paracomplete linear relation}, J. Operator theory. {bf 66} (2011), no. 2, 451--464.

bibitem{Cross}R.W. Cross, textit{ Multivalued Linear Operators}, Marcel Dekker, New York 1998.

bibitem{Embry} M.R. Embry, textit{ Factorization of operators on Banach spaces}, Proc. Amer. Math. Soc. {bf 38} (1973), 587--590.

bibitem{Fonf} V.P. Fonf, V.V. Shevchik, textit{ Operators on dense embedding and quasicomplements of subspaces of Banach spaces},

Arch. Math. {bf 62} (1994), 539--544.

bibitem{ghmesbenh}A. Gherbi, B. Messirdi, M. Benharrat, textit{ Quotient operators: new generation of linear operators},

Funct. Anal. Approx. Comput. {bf 7} (2015), no. 1, 85--93.

bibitem{GHMES} A. Gherbi, B. Messirdi, textit{ Quotient of linear relations and applications},

Asian-Eur. J. Math. {bf 12} (2019), no. 1, 01--20.

bibitem{Kaufman2} W. E. Kaufman, textit{ Semiclosed operators in Hilbert space}, Proc. Amer. Math. Soc. {bf 76} (1979), 67--73.

bibitem{Kaufman3} W. E. Kaufman, textit{ Closed operators and pure contractions in Hilbert space}, Proc. Amer. Math. Soc. {bf 87} (1983), 83--87.

bibitem{Labrousse0} J.-P. Labrousse, textit{ Les operateurs quasi-Fredholm: une generalisation des operateurs semi-Fredholm},

Rend. Circ. Mat. Palermo {bf 29} (1980), 161--258.

bibitem{Labrousse}J.-Ph. Labrousse, A. Sandovici, H. de Snoo, textit{ The Kato decompsition of quasi-Fredholm relations}, Operators and Matrices. {bf 4} (2010), no. 1, 1--51.

bibitem{MeDjMe} S. Messirdi, M. Djaa, B. Messirdi, textit{ Stability of almost closed operators on a Hilbert space}, Sarajevo J. Math. {bf 5} (2009), no. 17, 133--141.

bibitem{boundedness} S. Yuming, X. Guixin, R. Guojing, textit{ Boundedness and closedness of linear relations}, Linear Multilinear Algebra. {bf 66} (2018), no. 2, 309--333.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)