Sefa Anıl Sezer, İbrahim Çanak

DOI Number
First page
Last page


Given a $q$-integrable function $f$ on $[0, \infty)$, we define $s(x)=\int_{0}^{x}f(t)d_qt$ and $\sigma(s(x))=\frac{1}{x}\int _{0}^{x} s(t)d_{q}t$ for $x>0$. It is known that if $\lim _{x \to \infty}s(x)$ exists and
is equal to $A$, then $\lim _{x \to \infty}\sigma(s(x))=A$. But the converse of this implication is not true in general. Our goal is to obtain Tauberian conditions imposed on the general control modulo of $s(x)$ under which the converse implication holds. These conditions generalize some previously obtained Tauberian conditions.


q-integrable function; Tauberian conditions; q-derivative; q-integrals; quantum calculus.

Full Text:



M. H. Annaby and Z. S. Mansour: q-fractional calculus and equations. Springer, Heidelberg, 2012.

A. Aral, V. Gupta and R. P. Agarwal: Applications of q-calculus in operator theory. Springer, New York, 2013.

˙ I. C¸anak and U. Totur: Tauberian conditions for Cesàro summability of integrals. Appl. Math. Lett. 24 (2011), 891–896.

I. C¸anak and U. Totur: A Tauberian theorem for Cesàro summability of integrals. Appl. Math. Lett. 24 (2011), 391–395.

I. C¸anak and U. Totur: Alternative proofs of some classical type Tauberian theorems for the Cesàro summability of integrals. Math. Comput. Modelling 55 (2012), 1558–1561.

I. C¸anak, U. Totur and S. A. Sezer: Cesàro integrability and Tauberian theorems in quantum calculus. An S ¸tiint ¸. Univ. Al I Cuza Ia¸ si. Mat. (N.S.). 64 (2018), 9–19.

A. Fitouhi and K. Brahim: Tauberian theorems in quantum calculus. J. Nonlinear Math. Phys. 14 (2007), 316-332.

G. H. Hardy: Divergent series. Clarendon Press, Oxford, 1949.

F. H. Jackson: On q-functions and certain difference operator. Trans. R. Soc. Edinb. 46 (1909), 253–281.

F. H. Jackson: On q-definite integrals. Quart. J. Pure and Appl. Math. 41 (1910), 193–203.

V. Kac and P. Cheung: Quantum calculus. Springer-Verlag, New York, 2002.

M. A. Okur and U. Totur: Tauberian theorems for the logarithmic summability methods of integrals. Positivity 23 (2019), 55–73.

F. Ozsarac and I. Canak: Tauberian theorems for iterations of weighted mean summable integrals. Positivity 23 (2019), 219–231.

R. Schmidt: Uber divergente Folgen und lineare Mittelbildungen. Math. Z. 22 (1925), 89–152.

U. Totur, I. Canak and S. A. Sezer: Weighted integrability and its applications in quantum calculus. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 89 (2019), 791–797.

U. Totur and M. A. Okur: On Tauberian conditions for the logarithmic methods of integrability. Bull. Malays. Math. Sci. Soc. 41 (2018), 879–892.

U. Totur, M. A. Okur and I. Canak: One-sided Tauberian conditions for the (N,p) summability of integrals. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys.

(2018), 65–74.

DOI: https://doi.org/10.22190/FUMI2002471S


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)