Farzaneh Farhang Baftani, Hamid Reza Maimani

DOI Number
First page
Last page


The support of an $(n, M, d)$ binary code  $C$ over the set $\mathbf{A}=\{0,1\}$ is the set of all coordinate positions $i$, such  that  at  least two codewords  have distinct entry  in  coordinate $i$.  The  $r$th  generalized  Hamming  weight  $d_r(C)$,  $1\leq r\leq 1+log_2n+1$,  of  $C$  is  defined  as  the minimum  of  the  cardinalities  of  the  supports  of  all subset  of  $C$ of cardinality $2^{r-1}+1$.  The  sequence $(d_1(C), d_2(C), \ldots, d_k(C))$ is called the Hamming weight hierarchy (HWH) of $C$. In this paper we obtain HWH for $(2^k-1, 2^k, 2^{k-1}$ binary Hadamard code corresponding to Sylvester Hadamard matrix $H_{2^k}$ and we show that    $$d_r=2^{k-r} (2^r -1).$$ Also we compute the HWH of all $(4n-1, 4n, 2n)$ Hadamard code for $2\leq n\leq 8$.


Binary code; Hamming weight; Hadamard codes.

Full Text:



R. Craigen and H. Kharaghani, Hadamard matrices and Hadamard designs, in: Handbook of Combinatorial Designs ( C.J. Colbourn and J.H. Dinitz, eds.) Seconed edition,

pp. 273–280, Chapman Hall/CRC Press, Boca raton, FL, (2007).

S. T. Dougherty and S. Han, Higher Weights and Generalized MDS Codes, Korean Math. Soc. 6(2010), 1167-1182.

S.T. Dougherty, S. Han and H. Liu, Higher weights for codes over Rings, Appl. Algebra Engrg. Comm. Comput. 22(2011), 113-135.

M. Hall Jr., Hadamard matrices of order 16, J.P.L. Research Summery 36-10, 1(1961), 21-26.

M. Hall Jr., Hadamard matrices of order 20, J.P.L. Tecnical Report, (1965), 32-761.

K.J. Horadam, Hadamard matrices and their applications, Princeton University Press, Princeton, NJ, (2007).

N. ITO, J. S, Leon and J.Q. Langyear, Classification of 3-(24,12,5) designs and 24-dimensional hadamard matrices, J. Combin. Theory Ser A. 27(1979), 289-306.

H. Kharaghani, B. Tayfeh-Rezaie, Hadamard matrices of order 32, J. Combin. Des., 21(2013), 212-221.

H. Kimura, Classification of Hadamard matrices of order 28 with Hall sets, Discrete Math., 128(1994), 257-268.

H. Kimura, Classification of Hadamard matrices of order 28 , Discrete Math., 133(1994), 171-180.

H. Kimura, New Hadamard matrices of order 24, Graphs, Combin., 5(1989), 236-242.

H. Kimura and H. Ohmori, Construction of Hadamard matrices of order 28 , Graphs, Combin., 2(1986), 247-257.

V.I. Levenshtein, Application of the Hadamard matrices to a problem in coding, Problems of Cybernetics, 5(1964), 166-184.

F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North Holland, New York, (1977).

J. Seberry and M. Yamada, Hadamard matrices, sequences and block designs in: Contemporary Design Theory: A collection of surveys (J. H. Dinitz and D.R. Stinson, eds.) 431-560, John Wiely and Sons, Inc. New York, (1992).

E. Spence, Classification of Hadamard matrices of order 24 and 28 , Discrete Math., 140(1995), 185-243.

V.K.Wei, Generalized Hamming Weights for linear codes, IEEE Trans. Inform. Theory 37(1991) ,no.5,1412-1418.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)