f-LACUNARY STATISTICAL CONVERGENCE AND STRONG f-LACUNARY SUMMABILITY OF ORDER α OF DOUBLE SEQUENCES
Abstract
The main object of this article is to introduce the concepts of f-lacunary statistical convergence of order alpha and strong f-lacunary summability of order alpha of double sequences and give some inclusion relations between these concepts.
Keywords
Full Text:
PDFReferences
A. Aizpuru, M. C. Listán-Garc´ıa and F. Rambla-Barreno: Density by moduli and statistical convergence. Quaest. Math. 37(4) (2014), 525–530.
Y. Altın and M. Et: Generalized difference sequence spaces defined by a modulus function in a locally convex space. Soochow J. Math. 31(2) (2005), 233–243.
C. Belen and S. A. Mohiuddine: Generalized weighted statistical convergence and application. Applied Mathematics and Computation 219 (2013), 9821–9826.
V. K. Bhardwaj and S. Dhawan: Density by moduli and lacunary statistical convergence. Abstr. Appl. Anal. 2016 (2016), Art. ID 9365037, 11 pp.
A. Caserta, G. Di Maio and L. D. R. Koˇ cinac: Statistical convergence in function spaces. Abstr. Appl. Anal. 2011 (2011), Art. ID 420419, 11 pp.
J. S. Connor: The statistical and strong p−Cesaro convergence of sequences. Analysis 8 (1988), 47–63.
H. C¸akallı: Lacunary statistical convergence in topological groups. Indian J. Pure Appl. Math. 26(2) (1995), 113–119.
H. C¸akallı, C. G. Aras and A. Sönmez: Lacunary statistical ward continuity. AIP Conf. Proc. 1676 020042 (2015), http://dx.doi.org/10.1063/1.4930468.
H. C¸akallı and H. Kaplan: A variation on lacunary statistical quasi Cauchy sequences. Commun. Fac. Sci. Univ. Ank. S´ er. A1 Math. Stat. 66(2) (2017), 71–79.
H. C¸akallı and H. Kaplan: A study on N θ -quasi-Cauchy sequences. Abstr. Appl. Anal. 2013 (2013), Article ID 836970, 4 pages.
H. C¸akallı: A study on statistical convergence. Funct. Anal. Approx. Comput. 1(2) (2009), 19–24.
M. C¸ınar, M. Karakas ¸ and M. Et: On pointwise and uniform statistical convergence of order α for sequences of functions. Fixed Point Theory And Applications, 2013(33)
(2013), 11 pages.
R. C¸olak: Statistical convergence of order α. Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub. 2010 (2010), 121–129.
G. Di Maio and L. D. R. Koˇ cinac: Statistical convergence in topology. Topology Appl. 156 (2008), 28–45.
M. Et, M. C¸ınar and M. Karakas ¸: On λ−statistical convergence of order α of sequences of functions. J. Inequal. Appl. 2013(204) (2013), 8 pages.
M. Et, Y. Altın and H. Altınok: On some generalized difference sequence spaces defined by a modulus function. Filomat 17 (2003), 23–33.
M. Et, A. Alotaibi and S. A. Mohiuddine: On (∆ m ,I) statistical convergence of order α. Scientific World Journal, Article Number: 535419 (2014), 5 pages.
M. Et and H. S ¸engül: Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α. Filomat 28(8) (2014), 1593–1602.
H. Fast: Sur la convergence statistique. Colloq. Math. 2 (1951), 241–244.
A. R. Freedman, J. J. Sember and M. Raphael: Some Cesàro-type summability spaces. Proc. London Math. Soc. (3) 37(3) (1978), 508–520.
J. Fridy: On statistical convergence. Analysis 5 (1985), 301–313.
J. A. Fridy and C. Orhan: Lacunary statistical convergence. Pacific J. Math. 160 (1993), 43–51.
J. A. Fridy and C. Orhan: Lacunary statistical summability. J. Math. Anal. Appl. 173(2) (1993), 497–504.
A. K. Gaur and M. Mursaleen: Difference sequence spaces defined by a sequence of moduli. Demonstratio Math. 31(2) (1998), 275–278.
M. Is ¸ık and K. E. Et: On lacunary statistical convergence of order α in probability. AIP Conference Proceedings 1676 020045 (2015), doi:
http://dx.doi.org/10.1063/1.4930471.
M. Isık and K. E. Akbas ¸: On λ−statistical convergence of order α in probability. J. Inequal. Spec. Funct. 8(4) (2017), 57–64.
M. Is ¸ık: Generalized vector-valued sequence spaces defined by modulus functions. J. Inequal. Appl. 2010 Art. ID 457892 (2010), 7 pp.
H. Kaplan and H. C¸akallı: Variations on strong lacunary quasi-Cauchy sequences.
J. Nonlinear Sci. Appl. 9(6) (2016), 4371–4380.
I. J. Maddox: Sequence spaces defined by a modulus. Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166.
S. A. Mohiuddine, A. Alotaibi and M. Mursaleen: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012 Article ID
(2012), 9 pages.
M. Mursaleen and O. H. H. Edely: Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications 288(1) (2003), 223–231.
M. Mursaleen and S. A. Mohiuddine: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 233(2) (2009),
–149.
H. Nakano: Modulared sequence spaces. Proc. Japan Acad. 27 (1951), 508–512.
F. Nuray and E. Savas ¸: Some new sequence spaces defined by a modulus function. Indian J. Pure Appl. Math. 24(11) (1993), 657–663.
R. F. Patterson and E. Savas ¸: Lacunary statistical convergence of double sequences.
Math. Commun. 10(1) (2005), 55–61.
S. Pehlivan and B. Fisher: Lacunary strong convergence with respect to a sequence of modulus functions. Comment. Math. Univ. Carolin. 36(1) (1995), 69–76.
S. Pehlivan and B. Fisher: Some sequence spaces defined by a modulus. Math. Slovaca 45(3) (1995), 275–280.
A. Pringsheim: Zur Theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen 53(3) (1900), 289–321.
T. Salat: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139–150.
I. J. Schoenberg: The integrability of certain functions and related summability
methods. Amer. Math. Monthly 66 (1959), 361–375.
H. Steinhaus: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2 (1951), 73–74.
H. S ¸engül: Some Cesàro-type summability spaces defined by a modulus function of order (α,β). Commun. Fac. Sci. Univ. Ank. S´ er. A1 Math. Stat. 66(2) (2017), 80–90.
H. S ¸engül and M. Et: On lacunary statistical convergence of order α. Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014), 473–482.
DOI: https://doi.org/10.22190/FUMI2002495S
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)