Firat Ozsarac, Ibrahim Canak

DOI Number
First page
Last page


Let $q$ be a positive weight function on $\mathbf{R}_{+}:=[0, \infty)$ which is integrable in Lebesgue's sense over every finite interval $(0,x)$ for $0<x<\infty$, in symbol: $q \in L^{1}_{loc} (\mathbf{R}_{+})$ such that $Q(x):=\int_{0}^{x} q(t) dt\neq 0$ for each $x>0$, $Q(0)=0$ and $Q(x) \rightarrow \infty $ as $x \to \infty $.Given a real or complex-valued function $f \in L^{1}_{loc} (\mathbf{R}_{+})$, we define $s(x):=\int_{0}^{x}f(t)dt$ and$$\tau^{(0)}_q(x):=s(x), \tau^{(m)}_q(x):=\frac{1}{Q(x)}\int_0^x \tau^{(m-1)}_q(t) q(t)dt\,\,\, (x>0, m=1,2,...),$$provided that $Q(x)>0$. We say that $\int_{0}^{\infty}f(x)dx$ is summable to $L$ by the $m$-th iteration of weighted mean method determined by the function $q(x)$, or for short, $(\overline{N},q,m)$ integrable to a finite number $L$ if$$\lim_{x\to \infty}\tau^{(m)}_q(x)=L.$$In this case, we write $s(x)\rightarrow L(\overline{N},q,m)$. It is known thatif the limit $\lim _{x \to \infty} s(x)=L$ exists, then $\lim _{x \to \infty} \tau^{(m)}_q(x)=L$ also exists. However, the converse of this implicationis not always true. Some suitable conditions together with the existence of the limit $\lim _{x \to \infty} \tau^{(m)}_q(x)$, which is so called Tauberian conditions, may imply convergence of $\lim _{x \to \infty} s(x)$. In this paper, one- and two-sided Tauberian conditions in terms of the generating function and its generalizations for $(\overline{N},q,m)$ summable integrals of real- or complex-valued functions have been obtained. Some classical type Tauberian theorems given for Ces\`{a}ro summability $(C,1)$ and weighted mean method of summability $(\overline{N},q)$ have been extended and generalized.  


Tauberian conditions; weight function; summable integrals; finite interval.

Full Text:



bibitem{BK} {sc D. Borwein {rm and} W. Kratz, W}: textit{On relations between weighted mean and power series methods of summability}. J. Math. Anal. Appl. {bf 139} (1989), 178--186.

bibitem{CT1} {sc .{I}. c{C}anak {rm and} "{U}. Totur}: textit{Some Tauberian theorems for the weighted mean methods of summability}. Comput. Math. Appl. {bf 62} (2011), 2609--2615.

bibitem{CT3} {sc .{I}. c{C}anak {rm and} "{U}. Totur}: textit{Extended Tauberian theorem for the weighted mean method of summability}. Ukrainian Math. J. {bf 65} (2013), 1032--1041.

bibitem{CT2} {sc .{I}. c{C}anak {rm and} "{U}. Totur}: textit{A theorem for the $(J,p)$ summability method}. Acta Math. Hungar. {bf 145} (2015), 220--228.

bibitem{CCJH} {sc C. Chen {rm and} J. Hsu}: textit{Tauberian theorems for weighted means of double sequences}. Anal. Math. {bf 26} (2000), 243--262.

bibitem{FM} {sc '{A}. Fekete {rm and} F. M'{o}ricz}: textit{Necessary and sufficient Tauberian conditions in the case of weighted mean summable integrals over $R_{+}$. II}. Publ. Math. Debrecen. {bf 67} (2005), 65--78.

bibitem{KRMT} {sc J. Karamata}: textit{Sur un mode de croissance r'{e}guli`{e}re. Th'{e}or`{e}mes fondamentaux}. Bull. Soc. Math. France. {bf 61} (1933), 55--62.

bibitem{M} {sc F. M'{o}ricz}: textit{Ordinary convergence follows from statistical summability $(C,1)$ in the case of slowly

decreasing or oscillating sequences}. Colloq. Math. {bf 99} (2004), 207--219.

bibitem{OC} {sc F. "{O}zsarac{c} {rm and} .{I}. c{C}anak}: textit{Tauberian theorems for iterations of weighted mean summable integrals}. Positivity. {bf 23} (2019), 219--231.

bibitem{SC} {sc S. A. Sezer {rm and} .{I}. c{C}anak}: textit{On a Tauberian theorem for the weighted mean method of summability}. Kuwait J. Sci. {bf 42} (2015), 1--9.

bibitem{TZ} {sc H. Tietz {rm and} K. Zeller}: textit{Tauber-S"{a}tze f"{u}r bewichtete Mittel}. Arch. Math. (Basel). {bf 68} (1997), 214--220.

bibitem{TC1} {sc "{U}. Totur {rm and} .{I}. c{C}anak}: textit{Some general Tauberian conditions for the weighted mean summability method}. Comput. Math. Appl. {bf 63} (2012), 999--1006.

bibitem{TO} {sc "{U}. Totur {rm and} M. A. Okur}: textit{Alternative proofs of some classical Tauberian theorems for the weighted mean method of integrals}. Filomat. {bf 29} (2015), 2281--2287.

bibitem{TOC} {sc "{U}. Totur, M. A. Okur {rm and} .{I}. c{C}anak}: textit{One-sided Tauberian conditions for the $(overline{N},p)$ summability of integrals}.

Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. {bf 80} (2018), 65--74.

DOI: https://doi.org/10.22190/FUMI2003775O


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)