### CHARACTERIZATION OF SOME BIDERIVATIONS ON TRIANGULAR BANACH ALGEBRAS

**DOI Number**

**First page**

**Last page**

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

W. G. Bade, P. C. Curtis, and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras. Proc. London Math. Soc. 55 (1987), 359–377.

S. Barootkoob, On biamenability of Banach algebras. preprint.

S. Barootkoob, On n-weak biamenability of Banach algebras. preprint.

S. Barootkoob and H.R. Ebrahimi Vishki, Lifting derivations and n-weak amenability of the second dual of a Banach algebra, Bull. Austral. Math. Soc. 83 (2011), 222-129.

D. Benkoviˇ c, Biderivations of triangular algebras. Linear Algebra Appl. 431 (2009), 1587-1602.

M. Breˇsar, Commuting maps: A survey. Taiwanese J. Math. 8 (2004), 361–397.

H. G. Dales, F. Ghahramani and N. Grønbæk, Derivations into iterated duals of Banach algebras. Studia Math., 128 (1) (1998), 19–54.

Y. Du and Y. Wang, Biderivations of generalized matrix algebras. Linear Algebra. Appl. 438 (2013), 4483–4499.

B. E. Forrest and L. W. Marcoux, Derivations on triangular Banach algebras. Indiana Univ. Math. J., 45 (1996), 441-462.

B. E. Johnson, Weak amenability of group algebras. Bull. London Math. Soc. 23 (1991), 281–284.

V. Runde, Lectures On Amenability. Lecture Notes In Mathematics, 1774, Springer (2002).

Y. Zhang, Weak amenability of module extension of Banach algebras. Trans. Amer. Math. Soc. 354 (2002), 4131-4151.

DOI: https://doi.org/10.22190/FUMI2004929B

### Refbacks

- There are currently no refbacks.

ISSN 0352-9665 (Print)