Ufuk Çelik, Nihal Özgur

DOI Number
First page
Last page


In this paper, we focus on the geometric properties of fixed-points of a self-mapping and obtain new solutions to a recent problem called "fixed-circle problem" in the setting of an S-metric space. For this purpose, we develop various techniques by defining new contractive conditions and using some auxiliary functions. Furthermore, we present new examples to support our theoretical results.


fixed-points; S-metric space; self-mapping.

Full Text:



bibitem{Alolaiyan} H. Alolaiyan, B. Ali, and M. Abbas, emph{Characterization of a b-metric space completeness via the existence of a fixed point of Ciric-Suzuki type quasi-contractive multivalued operators and applications}. An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 27 (2019), no. 1, 5-33.

bibitem{Bojor} F. Bojor, emph{Fixed points of Kannan mappings in metric spaces endowed with a graph}, An. c{S}tiinc{t}. Univ.

"Ovidiustextquotedblright Constanc{t}a Ser. Mat. 20 (2012), no. 1, 31-40.

bibitem{Ciric} Lj. B. Ciric, emph{A generalization of Banach's contraction principle}textit{,} Proc. Amer. Math. Soc. 45 (1974), 267-273.

bibitem{Chaipornjareansri} S. Chaipornjareansri, emph{Fixed point theorems for }$Fw$emph{-contractions in complete s-metric spaces}, Thai J. Math. (2016), Special issue, 98-109.

bibitem{Fulga} A. Fulga, E. Karapi nar, textit{Revisiting of some

outstanding metric fixed point theorems via }$E$textit{contraction}. An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 26

(2018), no. 3, 73-98.

bibitem{Gupta} A. Gupta, emph{Cyclic contraction on }$S$emph{-metric space}, Int. J. Anal. Appl. 3 (2013), no. 2, 119-130.

bibitem{Hieu-Ly-Dung} N. T. Hieu, N. T. Ly and N. V. Dung, emph{A generalization of '{C}iri'{c} quasi-contractions for maps on }$S$emph{-metric spaces}, Thai J. Math. 13 (2015), no. 2, 369-380.

bibitem{Karapinar} E. Karapi nar, A-F. Rold'{a}n-L'{o}pez-de-Hierro, B. Samet, emph{Matkowski theorems in the context of quasi-metric spaces and consequences on }$G$emph{-metric spaces}, An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 24 (2016), no. 1, 309-333.

bibitem{Mlaiki S metric} N. Mlaiki, $alpha $textit{-}$psi $textit{-}emph{contractive mapping on }$S$emph{-metric space}, Math. Sci. Lett. 4 (2015), no. 1, 9-12.

bibitem{Mlaiki} N. Mlaiki, U. c{C}elik, N. Tac{s}, N. Y. "{O}zg"{u}r and A. Mukheimer, emph{Wardowski type contractions and the fixed-circle problem on S-metric spaces}, J. Math. 2018, Art. ID 9127486, 9 pp.

bibitem{Mlaiki-Axioms} N. Mlaiki, N. Tac{s} and N. Y. "{O}zg"{u}r, emph{On the fixed-circle problem and Khan type contractions}, Axioms 7 (2018), 80.

bibitem{ozgur-aip} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some fixed-circle theorems and discontinuity at fixed circle}, AIP Conference Proceedings 1926, 020048 (2018).

bibitem{Ozgur-mathsci} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some new contractive mappings on }$S$emph{-metric spaces and their relationships with the mapping}textit{ }$(S25)$, Math. Sci. (Springer) 11 (2017), no. 1, 7-16.

bibitem{Ozgur-Tas-Celik} N. Y. "{O}zg"{u}r, N. Tac{s} and U. c{C}elik, emph{New fixed-circle results on }$S$emph{-metric spaces}, Bull. Math. Anal. Appl., 9 (2017), no. 2, 10-23.

bibitem{Ozgur-Tas-chapter} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some generalizations of fixed point theorems on }$S$emph{- metric spaces}, Essays in Mathematics and Its Aplications in Honor of Vladimir Arnold, New York, Springer, 2016.

bibitem{Ozgur-Tas-circle-thesis} N. Y. "{O}zg"{u}r and N. Tac{s}, Fixed-circle problem on $S$-metric spaces with a geometric viewpoint, Facta Universitatis. Series: Mathematics and Informatics 34 (3) (2019), 459-472.

bibitem{Ozgur-Tas-malaysian} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some fixed-circle theorems on metric spaces}, Bull. Malays. Math. Sci. Soc. 42 (4) (2019), 1433-1449.

bibitem{Ozgur-Tas-vesnik} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{Some fixed point theorems on }$S$emph{-metric spaces}, Mat. Vesnik 69 (2017), no. 1, 39-52.

bibitem{Picard} N. Y. "{O}zg"{u}r and N. Tac{s}, emph{The Picard theorem on }$S$emph{-metric spaces}, Acta Mathematica Scientia 38 (2018), no. 4, 1245-1258.

bibitem{Pant-Ozgur-Tas} R. P. Pant, N. Y. "{O}zg"{u}r and N. Tac{s}, emph{On Discontinuity Problem at Fixed Point}, Bull. Malays. Math. Sci. Soc. (2017), in press.

bibitem{Sedgi-Shobe-Aliouche} S. Sedghi, N. Shobe and A. Aliouche, emph{A generalization of fixed point theorems in }$S$emph{-metric spaces}, Mat. Vesnik 64 (2012), no. 3, 258-266.

bibitem{Sedghi-Dung} S. Sedghi and N. V. Dung, textit{Fixed point theorems on }$S$textit{-metric spaces}, Mat. Vesnik 66 (2014), no. 1, 113-124.

bibitem{Souayah} N. Souayah, emph{A fixed point in partial }$S_{b}$emph{-metric spaces}. An. c{S}tiinc{t}. Univ. "Ovidiustextquotedblright Constanc{t}a Ser. Mat. 24 (2016), no. 3, 351-362.

bibitem{Tas} N. Tac{s}, emph{Suzuki-Berinde type fixed-point and fixed-circle results on }$S$emph{-metric spaces}, J. Linear Topol. Algebra 7 (2018), no. 3, 233-244.

bibitem{Tas-fbed} N. Tac{s}, emph{Various types of fixed-point theorems on }$S$emph{-metric spaces}, J. BAUN Inst. Sci. Technol. 20 (2018), no. 2, 211-223.

bibitem{Tas math} N. Tac{s}, N. Y. "{O}zg"{u}r and N. Mlaiki, emph{New types of }$F_{C}$emph{-contractions and the fixed-circle problem}, Mathematics, 6 (2018), no. 10, 188.

bibitem{Tas notes} N. Tac{s} and N. Y. "{O}zg"{u}r, emph{Common fixed points of continuous mappings on }$S$emph{-metric spaces}, Mathematical Notes 104 (2018), no. 4, 587-600.

bibitem{Wardowski} D. Wardowski, emph{Fixed points of a new type of contractive mappings in complete metric spaces}, Fixed Point Theory Appl. 2012, 2012:94, 6 pp.

DOI: https://doi.org/10.22190/FUMI2005273C


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)