SOME REMARKS ON THE CLASSICAL PRIME SPECTRUM OF MODULES
Abstract
Let R be a commutative ring with identity and let M be an R-module. A proper submodule P of M is called a classical prime submodule if abm ∈ P, for a,b ∈ R, and m ∈ M, implies that am ∈ P or bm ∈ P. The classical prime spectrum of M, Cl.Spec(M), is defined to be the set of all classical prime submodules of M. We say M is classical primefule if M = 0, or the map ψ from Cl.Spec(M) to Spec(R/Ann(M)), defined by ψ(P) = (P : M)/Ann(M) for all P ∈ Cl.Spec(M), is surjective. In this paper, we study classical primeful modules as a generalisation of primeful modules. Also we investigate some properties of a topology that is defined on Cl.Spec(M), named the Zariski topology.
Keywords
Full Text:
PDFReferences
bibitem{3H}
{sc M. Ali}: textit{ Multiplication modules and homogeneous idealization II}. Beitr Algebra Geom. {bf 48} (2007), 321--343.
%bibitem{AL}
%{sc H. Ansari-Toroghy {rm and} D. Hassanzadeh-Lelekaami}: textit{ On the prime spectrum of top modules}. Algebra Discrete Math. {bf 11} (1) (2011), 1--16.
bibitem{4F}
{sc A. Azizi}: textit{Weak multiplication modules}. Czechoslovak Math. J. {bf 53} (2003), no. 128, 529--534.
bibitem{1}
{sc M. F. Atiyah {rm and} I. Macdonald}: textit{Introduction to commutative algebra}. Longman
Higher Education, New York, 1969.
bibitem{11H}
{sc M. Baziar {rm and} M. Behboodi}: textit{ Classical primary submodules and decomposition of modules}. J Algebra Appl. {bf 8} (3) (2009), 351--362.
%bibitem{12H}
%{sc M. Behboodi}: textit {Classical prime submodules}. Ph. D. Thesis, University of Ahvaz, Iran, 2004.
bibitem{B07}
{sc M. Behboodi}: textit {A generalization of Bearâs lower nilradical for modules}. J. Algebra and its Appl. {bf 6}(2) (2007), 337-353.
bibitem{BI}
{sc M. Behboodi {rm and} M. R. haddadi}: textit {Classical Zariski topology of modules and spectral spaces}. I. International Electronic Journal of Algebra. {bf 4} (2008), 104--130.
bibitem{BJN} { M. Behboodi, R. Jahani-Nezhad, and M.H. Naderi, Classical quasi-primary submodules,
{it Bull. Iranian Math. Soc.} {bf 37} (4) (2011) 51-71.}
bibitem{6}
{sc M. Behboodi {rm and} H. Koohy}: textit {Weakly prime modules}. Vietnam J. Math. {bf 32}(2) (2004), 185--195.
bibitem{0}
{sc M. Behboodi {rm and} M. J. Noori}: textit {Zariski-like topology on the classical prime spectrum}. Bulletin of the Iranian Mathematical Society. {bf 35} (1)(2009), 253--269.
bibitem{8}
{sc N. Bourbaki}: textit{Algebra commutative}. Chap, 1. 2, Hermann, Paris, 1961.
bibitem{54}
{sc F. Callialp {rm and} U. Teki}: textit{ On unions of prime submodules}. Southeast Asian Bull. Math. {bf 28}(2004), no.2, 213--218.
bibitem{cam}
{sc V. Camillo }: textit{Distributive modules}. Journal of Algebra {bf 36}(1975), 16-25.
bibitem{3B}
{sc S. Ebrahimi Atani}: textit{ Strongly irreducible submodules}. Bull. Korean Math. Soc. {bf 42} (2005), no. 1, 121--131.
bibitem{10}
{sc Z. A. EL-Bast {rm and} P. F. Smith}: textit{ Multiplication modules}. Comm. Algebra. {bf 16} (1988), 755--779.
bibitem{12}
{sc M. Hochster}: textit{ Prime ideal structure in commutative rings}. Trans. Amer. math. Soc. {bf 137} (1969), 43--60.
bibitem{16H}
{sc C. P. Lu}: textit{ Prime submodules of modules}. Comment Math Univ St Paul. {bf 33} (1) (1984), 61--69.
bibitem{13-25}
{sc C. P. Lu}: textit{ Saturations of submodules}. Comm. Algebra. {bf 31} (6) (2003), 2655-2673.
bibitem{Lu07}
{sc C. P. Lu}: textit{ A module whose prime spectrum has the surjecive natural map}. Houston J. Math. {bf 31} (1) (2007), 125-143.
bibitem{55}
{sc A. A. Tuganbaev}: textit{ Flat multiplication modules}, (Russian) Uspekhi Mat. Nauk. {bf 60} (361)(2005), no.1, 173 -- 174,
translation in Russian Math. Surveys. {bf 60} (2005) no.1, 171--172.
DOI: https://doi.org/10.22190/FUMI191220002A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)