Hamid Faraji, Stojan Radenovic

DOI Number
First page
Last page


In this paper, we establish some fixed point theorems for convex contraction mappings in F-metric spaces. Also, we introduce the concept of (\alpha,\beta)-convex contraction mapping in F-metric spaces and give some fixed point results for such contractions. Moreover, some examples are given to support our theoretical results.


F-Complete; Convex contraction; Fixed point; F-Metric space; Orbital continuity.

Full Text:



S. P. Acharya: Some results on fixed points in uniform spaces. Yokohama Math.

J. 22 (1974), 105–116.

C. D. Alecsa: Some fixed point results regarding convex contractions of Presi´ c

type. J. Fixed Point Theory Appl. 20(1) (2018), Art. 7, 19 pp.

M. A. Alghamdi, S. H. Alnafei, S. Radenovi´ c and N. Shahzad: Fixed point

theorems for convex contraction mappings on cone metric spaces. Math. Comput. Modelling 54 (2011), no. 9-10, 2020–2026.

I. A. Bakhtin: The contraction mapping principle in almost metric space. Func-

tional analysis, (Russian), Ul´ yanovsk. Gos. Ped. Inst., Ul´ yanovsk, (1989), 26–37.

R. K. Bisht and N. Hussain: A note on convex contraction mappings and dis-

continuity at fixed point. J. Math. Anal. 8(4), (2017), 90–96.

L. B. Ciri´ c: Some Recent Results in Metrical Fixed Point Theory. Faculty of

Mechanical Engineering, University of Belgrade, Belgrade, 2003.

D. D. Doli´ canin and B. B. Mohsin: Some new fixed point results for convex

contractions in b-metric spaces. Univ. Thought Pub. Nat. Sci. 9(1), (2019), 67–71.

K. S. Eke, V. O. Olisama and S. A. Bishop: Some fixed point theorems for

convex contractive mappings in complete metric spaces with applications. Cogent

Math. Stat. 6(1) (2019), Art. ID 1655870, 10 pp.

H. Faraji, K. Nourouzi and D. O’Regan: A fixed point theorem in uniform

spaces generated by a family of b-pseudometrics. Fixed Point Theory 20 (1),

(2019), 177–183.

H. Faraji, D. Savi´ c, and S. Radenovi´ c: Fixed point theorems for Geraghty

contraction type mappings in b-metric spaces and applications. Axioms 8 (34),


F. Georgescu: IFSs consisting of generalized convex contractions. An. S ¸tiint ¸.

Univ. ”Ovidius” Constant ¸a Ser. Mat. 25 (1) (2017), 77–86.

R. George, A. H. Nabwey, R. Ramaswamy, S. Radenovi´ c and K. P.

Reshma: Rectangular cone b-metric spaces over Banach algebra and contraction

principle. Fixed Point Theory Appl. 2017, Paper No. 14, 15 pp.

A. Hussain and T. Kanwal: Existence and uniqueness for a neutral differential

problem with unbounded delay via fixed point results. Trans. A. Razmadze Math.

Inst. 172 (3), (2018),part B, 481–490.

V. I. Istratescu: Some fixed point theorems for convex contraction mappings and

mappings with convex diminishing diameters. I. Ann. Mat. Pura Appl. 130(4),

(1982), 89–104.

V. I. Istratescu: Some fixed point theorems for convex contraction mappings and

mappings with convex diminishing diameters. II. Ann. Mat. Pura Appl. 134(4),

(1983), 327–362.

W. Kirk and N. Shahzad: Fixed Point Theory in Distances Spaces. Springer:

Berlin, Germany, 2014.

M. Jleli and B. Samet: On a new generalization of metric spaces. J. Fixed

Point Theory Appl. 20(30), (2018), Art. 128, 20 pp.

S.G. Matthews: Partial metric topology. Research Report 212, Dept. of Com-

puter Science, University of Warwick, 1992.

M. A. Miandaragh, M. Postolache and S. Rezapour: Approximate fixed

points of generalized convex contractions. Fixed Point Theory Appl. 2013,

:255, 8 pp.

Z. D. Mitrovi´ c, H. Aydi, N. Hussain and A. Mukheimer: Reich, Jungck,

and Berinde common fixed point results on F-metric spaces and an application. Mathematics (2019), 7, 387.

Z. D. Mitrovi´ c, H. Aydi, N. Mlaiki, M. Gardaˇ sevi´ c-Filipovi´ c, K. Kuki´ c

and S. Radenovi´ c: Some New Observations and Results for Convex Contractions of Isatratescu’s Type. Symmetry 2019, 11, 1457, doi:10.3390/sym11121457.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)