HOMOTHETIC MOTIONS VIA GENERALIZED BICOMPLEX NUMBERS
Abstract
In this paper, by using the matrix representation of generalized bicomplex
numbers, we dene the homothetic motions on some hypersurfaces in
four dimensional generalized linear space R4 alpha-beta. Also, for some special cases we give some examples of homothetic motions in R4 and R42
and obtainsome rotational matrices, too. So, we investigate some applications about kinematics of generalized bicomplex numbers
Keywords
Full Text:
PDFReferences
bibitem{alkaya}Alkaya D. Homothetic motions with bicomplex numbers,
Masters Thesis, Dumlupnar University Institute of Science,
Kütahya, 2013.
bibitem{ak1} Aksoyak K. F. and Yayli Y., Homothetic motions and surfaces
in $mathbb{E}^{4}$, Bull. Malays. Math. Sci. Soc. 38, 259-269, 2015.
bibitem{ak2} Aksoyak K. F. and Yayli Y., Homothetic motions and Lie
groups in $mathbb{E}_{2}^{4}$, J. Dyn. Syst. Geom. Theo. vol.11, 23-38, 2013.
bibitem{haci} Haci salihou{g}lu H.H., On the rolling of one curve or
surface upon another, Proc. R. Irish Acad. 71, 13-17, 1971.
bibitem{yay1} Jafari M., Yayli Y., Rotation in four dimensions via
generalized Hamilton operators. Kuwait J Sci 40 (1): 67-79, 2013.
bibitem{yay2} Jafari M., Yayli Y. Generalized quaternions and
rotation in 3-space $mathbb{E}_{alpha beta }^{3}$. TWMS J Pure Appl Math
(2), 224-232, 2015.
bibitem{hesna} Kabadayi H., Yayli Y., Homothetic motion at $E^{4}$ with
bicomplex numbers, Adv. Appl. Clifford Algebr., 21, 541-546, 2011.
bibitem{moore} Moore C.L.E, Surfaces of rotation in a space of four
dimensions, Ann. of Math. 21, 81-93, 1919.
bibitem{kara} "{O}zkaldi Karakuc{s} S. and Y. Yayli , Bicomplex number and
tensor product surfaces in $mathbb{R}_{2}^{4}$, Ukrainian Mathematical
Journal, 64 (3), 344-355, 2012
bibitem{siddika} "{O}zkaldi Karakuc{s} S. and Kahraman Aksoyak F.,
Generalized bicomplex numbers and Lie groups, Adv. Appl. Clifford Algebr.,
, 943-963, 2015.
bibitem{kar} "{O}zkaldi S., Yayli Y., "Tensor product surfaces in $%
mathbb{R}^{4}$ and Lie groups" Bull. Malays. Math. Sci.Soc. (2) 33 (2010),
no. 1, 69-77.
bibitem{price} Price G. B., An Introduction to Multicomplex Spaces and
Functions, Marcel Dekker, Inc., New York, 1990.
bibitem{segre} Segre C. Le rappresentazioni reali delle forme complesse e
gli enti iperalgebrici, Math. Ann. 40, 1-25, 1892.
bibitem{yay1} Yayli Y., Homothetic motions at $E^{4}, $Mech. Mach. Theory,
, 303-305, 1992.
bibitem{yay2} Yayli Y. and B"{u}kc"{u} B., Homothetic motions at $E^{8}$
with cayley numbers, Mech. Mach. Theory, 30, 417-420, 1995.
DOI: https://doi.org/10.22190/FUMI200604021A
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)