Sachin Kumar Srivastava, Kanika Sood, Anuj Kumar

DOI Number
First page
Last page


The main purpose of this paper is to study transversal hypersurface (briefly, $\mathcal{T}$-hypersurface) $P$ of a paraSasakian manifold $M$. We derive results allied with totally geodesic and totally umbilical $\mathcal{T}$-hypersurface of $M$. The necessary and sufficient condition for normality of $(\mathfrak{f},\mathfrak{g},\mu,\upsilon,\delta)$-structure is established. Examples of $\mathcal{T}$-hypersurface are also illustrated.


ParaSasakian manifold;Pseudo-metric; Hypersurface; (f,g,µ,υ,δ)-structure; Geodesic

Full Text:



B. O'NEILL: Semi-Riemannian geometry with applications to Relativity. Academic Press, New York, 1983.

G. LIFSCHYTZ and M. ORTIZ: Quantum gravity eects at a black hole horizon. Nucl. Phys. B 456(1995), 377-401.

K. L. DUGGA, A. BEJANCU: Lightlike Submanifolds of semi-Riemannian Manifolds and Applications. Mathematics and its Applications, 364, Kluwer Academic Publishers,

Dordrecht, 1996.

K. YANO, M. OKUMURA: On (f; g; u; v; lambda)-structures. Kodai Math. Sem. Rep. 22 (1970), 401-423.

M. OKUMURA: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 212 (1975), 355-364.

S. MONTIEL: Real hypersurfaces of a complex hyperbolic space. J. Math. Soc. 37(3) (1985), 515-535.

Y. MAEDA:On real hypersurfaces of a complex projective space. J. Math. Soc. Japan. 28 (3) (1976), 529-540.

K. YANO, S. S. EUM, U-HANG KI: On transversal hypersurfaces of an almost contact manifold. Kodai Math. Sem. Rep. 24 (1972), 459-470.

M. AHMAD, A. A. SHAIKH: Transversal hypersurface of (LCS)n-manifold. Acta Math. Univ. Comenianae. 87(1) (2018), 107-116.

R. PRASAD, M. M. TRIPATHI: Transversal hypersurfaces of Kenmotsu manifold. Indian J. Pure Appl. Math. 34(3) (2003), 443-452.

R. PRASAD, S. P. YADAV: Transversal hypersurfaces with (f; g; u; v; lambda)-structures of a nearly trans-Sasakian manifold. Advances in Pure. Appl. Math. 7(2) (2016), 115-121.

K. L. DUGGAL, B. SAHIN: Dierential Geometry of Lightlike Submanifolds. Birkhauser, Basel, 2010.

K. SRIVASTAVA, S. K. SRIVASTAVA: On a class of -paraKenmotsu manifolds. Mediterr. J. Math. 13(1) (2016), 391-399.

K. SRIVASTAVA, S. K. SRIVASTAVA: On a class of paracontact metric 3-manifolds. J. Int. Acad. Phys. Sci. 22(4) (2018), 263-277.

S. K. SRIVASTAVA, A. SHARMA: Geometry of PR-semi-invariant warped product submanifolds in paracosymplectic manifold. J. Geom. 108 (2017), 61-74.

S. K. SRIVASTAVA, A. SHARMA, S. K. TIWARI: PR-pseudo-slant warped product submanifold of a nearly paracosymplectic manifold . An. Stiint. Univ. Al. I. Cuza Iasi.

Mat. (N.S.). 65(1) (2019), 1-17.

K. SOOD, K. SRIVASTAVA, S. K. SRIVASTAVA: Pointwise slant curves in quasi-paraSasakian 3-manifolds. Mediterr. J. Math. 17, 114 (2020). https://doi.org/10.1007/s00009-020-01554-y

S. ZAMKOVOY: Canonical connections on paracontact manifolds. Ann. Glob. Anal. Geom. 36 (2009), 37-60.

P. DACKO: On almost paracosymplectic manifolds. Tsukuba J. Math. 28(1) (2004), 193-213.

S. K. SRIVASTAVA, K. SRIVASTAVA: Harmonic maps and para-Sasakian geometry. Matematicki Vesnik 69(3) (2017), 153-163.

S. DRAGOMIR, M. H. SHAHID and F. R. AL-SOLAMY: Geometry of Cauchy-Riemann Submanifolds. Springer, Singapore, 2016.

DOI: https://doi.org/10.22190/FUMI2004003S


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)