HYPERSPHERICAL AND HYPERCYLINDRICAL GENERALIZED HELICES IN THE SENSE OF HAYDEN IN $\mathbb{E}^{2n+1}$

Hasan Altınbaş, Bülent Altunkaya, Levent Kula

DOI Number
https://doi.org/10.22190/FUMI201116060A
First page
809
Last page
821

Abstract


In this paper, we investigate generalized helices in the sense of Hayden in $(2n+1)$-dimensional Euclidean space  $\mathbb{E}^{2n+1}$. We obtain some results for such curves in $\mathbb{E}^{2n+1}$.  Thereafter, we obtain two families of generalized helices which are hyperspherical and hypercylindrical generalized helices in the sense of Hayden. Later, we give examples of hyperspherical and hypercylindrical generalized helices in the sense of Hayden in $\mathbb{E}^{5}$. Finally, we give examples of hyperspherical and hypercylindrical generalized helices in the sense of Hayden in $\mathbb{E}^{3}$ and illustrated the graphics of these curves with Mathematica 10.0.

Keywords

generalized helices, global submanifolds, Euclidean space

Full Text:

PDF

References


B. Altunkaya and L Kula: General helices that lie on the sphere $S^{2n}$ in Euclidean space ${E^{2n+1}}$, Universal Journal of Mathematics and Application, 1 30, (2018), 166--170.

B Altunkaya and L Kula: On polynomial helices in n-dimensional Euclidean space ${R^n}$, Advances in Applied Clifford Algebras, 28:4, (2018) 1--12.

M. do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, 1976.

C Camci, K. Ilarslan, L. Kula and H. H. Hacisalihoglu: Harmonic curvatures and generalized helices in ${E^n}$, Chaos Solitons Fractals, 40, (2007), 2590-2596.

H. H. Hacisalihoglu: Diferensiyel Geometri 1, 3. Edition, 1998.

A. Hayden: On a generalized helix in a Riemannian $n$- space, Proc. London Math. Soc. 31:2, (1930), 337--345.

F. Klein and S. Lie: "{U}ber diejenigen ebenen Curven welche durch ein geschlossenes System von einfach unendlich vielen vertauschbaren linearen Transformationen in sich "{u}bergenen, Math. Ann., 4, (1871), 50--84.

G. Ozt"{u}rk, K. Arslan, and H. H. Hacisalihoglu: textit{A Caharacterization of ccr-curves in ${R^m}$, Proceeding of the Estonian Academy of Science, 574, (2008), 217--224.

B. O'Neil: Semi-Riemannian Geometry, Academic Press, New-York, 1983.

S. Izumiya and T. Nagai: Generalized Sabban Curves in the Euclidean $n$-Sphere and Spherical Duality, Results in Mathematics, 72, (2017), 401--417.




DOI: https://doi.org/10.22190/FUMI201116060A

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)