Ivana D. Ilić, Jelena M. Višnjić, Branislav M. Randjelović, Vojislav M. Mitić

DOI Number
First page
Last page


This paper investigates the phenomenon of the incomplete data samples by analyzing their structure and also resolves the necessary procedures regularly used in missing data analysis. The research gives a crucial perceptive of the techniques and mechanisms needed in dealing with missing data issues in general. The motivation for writing this brief overview of the topic lies in the fact that statistical researchers inevitably meet missing data in their analysis. The authors examine the applicability of regular approaches for handling the missing data situations. Based on several previously published results, the authors provide an example of the incomplete data sample model that can be implemented when confronting with specific missing data patterns. 


Missing data, EM algorithm, Listwise deletion, Missing data analysis.

Full Text:



bibitem{A} {sc J. L. Arbuckle {rm and} W. Wothke}:

textit{Amos 4.0 User Guide}. Smallwaters, Chicago IL, 1999.

bibitem{B93} {sc J. N. Bacro {rm and} M. Brito}: textit{Strong limiting behaviour of a simple tail

Pareto-index estimator}. Statistics and Decisions, {bf 3} (1993) 133--134.

bibitem{B07} {sc S. R. Browning {rm and} B. R. Browning}:

textit{Rapid and Accurate Haplotype Phasing and Missing-Data

Inference for Whole-Genome Association Studies

By Use of Localized Haplotype Clustering}. The American Journal of Human Genetics, {bf 81} (2007) 1084--1097.

bibitem{De77} {sc A. P. Dempster, N. M. Laird, D. B. Rubin}:

textit{Maximum likelihood from incomplete data via the EM algorithm

(with discussion).} J. R. Stat. Soc., {bf B39} (1977) 1--38.

bibitem{Di07} {sc S. Dilmaghani, H. Isaacc, P. Soonthornnonda, E. Christensen, C. H. Ronald}:

textit{Harmonic Analysis of Environmental

Time Series with Missing Data or

Irregular Sample Spacing.} Environ. Sci. Technol., {bf 41} (2007) 7030--7038.

bibitem{D81} {sc W. Dunsmuir {rm and} P. M. Robinson}:

textit{Asymptotic theory for time series containing and amplitude

modulated observations.} The Indian Jornal of Statistics, Series A, {bf 43(3)} (1981) 260--281.

bibitem{E10} {sc C. K. Enders}:

textit{Missing not at random models for latent curve analyses.} Manuscript submitted for

publication, 2010.

bibitem{Gi08} {sc D. Giannone, L. Reichlin, D. Small}:

textit{Nowcasting: The real-time informational content

of macroeconomic data.} Journal of Monetary Economics No., {bf 55} (2008) 665--676.

bibitem{Go08} {sc M. Gottschalk, M. E. Tinetti, D. I. Baker, M. King, E. M. Terrence, D. Acampora,

L. Leo-Summers, H. G. Allore }:

textit{Effect of Dissemination of Evidence in Reducing Injuries from Falls.}

New England Journal of Medicine, {bf 359} (2008) 252--261.

bibitem{Gr09} {sc J W. Graham}:

textit{Missing data analysis: Making it work in the real world.}

Annu. Rev. Psychol., {bf 60} (2009) 549--576.

bibitem{Gr00} {sc J. W. Graham, S. M. Hofer}:

textit{Multiple imputation in multivariate research.} In Modeling Longitudinal and

Multiple-Group Data: Practical Issues, Applied Approaches, and Specific Examples, Eds. T. D. Little,K. U. Schnabel,

J. Baumert. Hillsdale, NJ: Erlbaum, 2000, pp. 201--218.

bibitem{Gr03} {sc J. W. Graham, P. E. Cumsille, E. Elek-Fisk}:

textit{Methods for handling missing data.} In Research Methods in

Psychology, Eds. J. A. Schinka, W. F. Velicer, (pp. 87--114). Volume 2 of Handbook of Psychology, Ed. IB Weiner.

New York:Wiley 2003.

bibitem{H07} {sc N. J. Horton, K. P. Kleinman}:

textit{Much ado about nothing: a comparison of missing data methods and software

to fit incomplete data regression models.} Am. Stat. {bf 61} (2007) 79--90.

bibitem{I12} {sc I. Ili' c {rm and} P. Mladenovi'c}:

textit{On tail index estimation using a sample with missing observations.} Statistics and Probability Letters, {bf 82} (2012) 949--958.

bibitem{J96} {sc K. G. J"{o}reskog {rm and} D. S"{o}rbom}:

textit{LISREL 8 Users Reference Guide.} Sci. Software, Chicago, 1996.

bibitem{K10} {sc P. Kline {rm and} A. Santos}:

textit{Sensitivity to Missing Data Assumptions: Theory and An

Evaluation of the U.S. Wage Structure.} In: Proceedings of a 2010 Seoul Summer Economics Conference, 2010.

bibitem{K07} {sc L. Koopman, J. M. G. van der Heiden, D. E. Grobbee and M. M. Rovers}:

textit{Comparison of Methods of Handling Missing Data in Individual Patient Data

Meta-analyses: An Empirical Example on Antibiotics in Children with Acute

Otitis Media.} American Journal of Epidemiology, {bf 167(5)} (2007) 540-545.

bibitem{L20} {sc M. Lai}: Course Handouts for Bayesian Data Analysis Class, 2020.

bibitem{L87} {sc R. J. A. Little {rm and} D. B. Rubin}:

textit{Statistical Analysis with Missing Data.} Wiley, New York, 1987.

bibitem{L02} {sc R. J. A. Little {rm and} D. B. Rubin}:

textit{Statistical Analysis with Missing Data.} Wiley, New York, 2n ed., 2002.

bibitem{M85} {sc O. S. Miettinen}:

textit{Theoretical Epidemiology: Principles of Occurence Research in Medicine.} John Wiley and Sons, New York, 1985.

bibitem{M10} {sc P. Mladenovi'c {rm and} Z. Petrovic}:

textit{Cagan's paradox and money demand in hyperinflation:Revisited at daily frequency.} Journal of International Money

and Finance, {bf 29} (2010) 1369--1384.

bibitem{M08} {sc P. Mladenovi'c {rm and} V. Piterbarg}:

textit{On estimation of the exponent of regular variation using a

sample with missing observations.} Statist. Prob. Letters. {bf 78} (2008)


bibitem{M07} {sc L. K. Muth'{e}n {rm and} B. O. V. Muth'{e}n}:

textit{Mplus User's Guide.} CA: Muth'{e}n and Muth'{e}n, Los Angeles, 4th ed., 2007.

bibitem{N99} {sc M. C. Neale, S. M. Boker, G. Xie, H. H. Maes}:

textit{ Mx: Statistical Modeling. } Virginia Commonwealth

Univ. Dept. Psychiatry., Richmond, 5th ed., 1999.

bibitem{P09} {F. J. Prevosti {rm and} M. A. Chemisquy}:

textit{The impact of missing data on real morphological phylogenies:

influence of the number and distribution of missing entries.}

Cladistics, {bf 26} (2009) 326--339.

bibitem{R76} {sc D. B. Rubin}:

textit{Inference and missing data.} Biometrika, {bf 63} (1976) 581--592.

bibitem{R87} {sc D. B. Rubin}:

textit{Multiple Imputation for Nonresponse in Surveys.} Wiley, New York, 1987.

bibitem{R09} {sc R. J. Ryder {rm and} G. K. Nicholls}:

textit{Missing data in a stochastic Dollo model for cognate data, and its application to the dating of Proto-Indo-European.} The Smithsonian/NASA Astrophysics Data System,eprint arXiv:0908.1735, 2009.

bibitem{S97} {sc J. L. Schafer}:

textit{Analysis of Incomplete Multivariate Data.}

Chapman and Hall, New York, 1997.

bibitem{S99} {sc J. L. Schafer}:

textit{Multiple imputation: a primer.}

Stat. Methods Med. Res. {bf 8} (1999) 3--15.

bibitem{S98} {sc J. L. Schafer, M. K. Olsen}:

textit{Multiple imputation for multivariate missing data problems: a data analyst's

perspective.} Multivar. Behav. Res., {bf 33} (1998) 545--571.

bibitem{S02} {sc J. L. Schafer, J. W. Graham}:

textit{Missing data: our view of the state of the art.}

Psychol. Methods, {bf 7} (2002) 147--177.

bibitem{S08} {sc C. Schumacher, J. Breitung}:

textit{Real-time forecasting of German GDP based on a large factor

model with monthly and quarterly data.}

International Journal of Forecasting, {bf 24} (2008) 386--398.

bibitem{V94} {sc W. Vach}:

textit{Logistic Regression with Missing Values in the Covariates.} Springer, New York, 1994.

DOI: https://doi.org/10.22190/FUMI201118016I


  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)