Alev Kelleci Akbay

DOI Number
First page
Last page


In the paper, we obtain the complete classification of Translation-Factorable (TF-) surfaces with vanishing Gaussian curvature in Euclidean and Minkowski 3-spaces


flat surfaces, Gaussian curvatures, 3-spaces

Full Text:



M. E. Aydin: A generalization of translation surfaces with constant curvature in the isotropic space. J. Geom. 2015, DOI:10.1007/s00022-015-0292-0.

M. E. Aydin: Constant curvature factorable surfaces in in 3-dimensional isotropic space. J. Korean Math. Soc. 55(1) (2018), 59{71, DOI:10.4134/JKMS.j160767.

M. E. Aydin, M. A. Kulahci and A. O. Ogrenmis: Non-zero constant curvature factorable surfaces in pseudo-Galilean space. Commun. Korean Math. Soc. 33 (2018), No. 1, pp. 247{259.

M. E. Aydin, M. A. Kulahci and A. O. Ogrenmis: Constant curvature Translation surfaces in Galilean 3-space. Int. Elect. J. Geo. 12(1) (2019), 9{19.

M. E. Aydin, A. O. Ogrenmis and M. Ergut: Classication of factorable surfaces in pseudo-Galilean space. Glas. Mat. Ser. III 50(70) (2015), 441{451.

M. Dede, C. Ekici and W. Goemans: Surfaces of revolution with vanishing curvature in Galilean 3-space. J. Math. Physics Analysis Geometry (2018), 14(2),


M. Dede, C. Ekici, W. Goemans and Y. Unluturk: Twisted surfaces with vanishing curvature in Galilean 3-space. Int. J. Geom. Meth. Mod. Phy. 15(1) (2018), 1850001, 13pp.

M. Dede: Tubular surfaces in Galilean space. Math. Commun. 18 (2013), 209{217.

S. A. Difi, H. Ali and H. Zoubir: Translation-Factorable (TF) surfaces in the 3-dimensional Euclidean space and Lorentzian-Minkowski space satisfying ri = i; ri. Elect. J. of Math. Analysis and Appl. Vol. 6(2) July 2018, pp. 227{236.

F. Dillen, W. Goemans and I. Van de Woestyne: Translation surface of Weingarten type in 3-space. Bull. Transilv. Univ. Brasov., 15 (2008), pp. 109{122.

F. Dillen, I. Van de Woestyne, L. Verstraelen and J. T. Walrave: The surface of Scherk in E3: a special case in the class of minimal surfaces dened as the sum of two curves. Bull. Inst. Math. Acad. Sin. 26 (1998), 257{267.

B. Dijvak and Z. M. Sipus: Some special surfaces in the pseudo-Galilean space. Acta Math. Hungar. 118 (2008), 209{226.

M. K. Karacan and Y. Tuncer: Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean. Bull. Math. Anal. Appl. 5 (2013), 87{100.

A. Kelleci: Translation-factorable surfaces with vanishing curvatures in Galilean 3-spaces. Int. J of Maps in Math.-IJMM 4(1), 14{26.

H. Liu: Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64 (1-2) (1999), 141{149.

R. Lopez and M. Moruz: Translation and homothetical surfaces in Euclidean space with constant curvature. J. Korean Math. Soc. 52(3) (2015), 523{535.

H. Meng and H. Liu: Factorable surfaces in 3-Minkowski space. Bull. Korean Math. Soc. 46 (2009), 155{169.

D. Palman: Drehyzykliden des Galileischen Raumes G3. Math. Pannon. 2(1) (1991), 98-104.

O. Roschel: Die Geometrie des Galileischen Raumes. Bericht der Mathematisch-Statistischen Sektion in der Forschungsgesellschaft Joanneum, Bericht Nr. 256, Habilitationsschrift, Leoben, 1984.

H. Sachs: Isotrope Geometrie des Raumes. Friedr. Vieweg and Sohn (Braunschweig/Wiesbaden), 1990.

L. C. B. da Silva: The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces. J. Geom. (2019) 110:31.

Z. M. Sipus: Translation surfaces of constant curvatures in a simply isotropic space. Period. Math. Hungar. 68 (2014), no. 2, 160{175.

Z. M. Sipus and B. Dijvak: Translation surfaces in the Galilean space. Glas. Mat. Ser. III 46(66) (2011), 455{469.

L. Verstraelen, J. Walrave and S. Yaprak: The minimal translation surfaces in Euclidean space. Soochow J. Math. 20 (1) (1994), pp. 77{82.

Y. Yu and H. Liu: The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Dierential Geometry, 33-39, Kyungpook Nat. Univ., Taegu, (2007).



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)