SOME BOUNDS FOR THE COMPLEX µCEBYEV FUNCTIONAL OF ABSOLUTELY CONTINUOUS FUNCTIONS

Sever S. Dragomir

DOI Number
https://doi.org/10.22190/FUMI210429015D
First page
193
Last page
210

Abstract


In this paper we provide several bounds for the modulus of the \textit{%
complex \v{C}eby\v{s}ev functional}%
\begin{equation*}
C\left( f,g\right) :=\frac{1}{b-a}\int_{a}^{b}f\left( t\right) g\left(
t\right) dt-\frac{1}{b-a}\int_{a}^{b}f\left( t\right) dt\int_{a}^{b}g\left(
t\right) dt
\end{equation*}%
under various assumptions for the integrable functions $f,$ $g:\left[ a,b%
\right] \rightarrow \mathbb{C}$. We show amongst others that, if $f$ and $g$
are absolutely continuous on $\left[ a,b\right] $ with $f^{\prime }\in L_{p}%
\left[ a,b\right] ,$ $g^{\prime }\in L_{q}\left[ a,b\right] ,$ $p,$ $q>1$
and $\frac{1}{p}+\frac{1}{q}=1$, then%
\begin{equation*}
\max \left\{ \left\vert C\left( f,g\right) \right\vert ,\left\vert C\left(
\left\vert f\right\vert ,g\right) \right\vert ,\left\vert C\left(
f,\left\vert g\right\vert \right) \right\vert ,\left\vert C\left( \left\vert
f\right\vert ,\left\vert g\right\vert \right) \right\vert \right\}
\end{equation*}%
\begin{equation*}
\leq \left[ C\left( \ell ,F_{\left\vert f^{\prime }\right\vert ^{p}}\right) %
\right] ^{1/p}\left[ C\left( \ell ,F_{\left\vert g^{\prime }\right\vert
^{q}}\right) \right] ^{1/q},
\end{equation*}%
where $F_{\left\vert h\right\vert }:\left[ a,b\right] \rightarrow \mathbb{[}%
0,\infty )$ is defined by $F_{\left\vert h\right\vert }\left( t\right)
:=\int_{a}^{t}$.$\left\vert h\left( t\right) \right\vert dt$ and $\ell :%
\left[ a,b\right] \rightarrow \left[ a,b\right] ,$ $\ell \left( t\right) =t$
is the identity function on the interval $\left[ a,b\right] .$ Applications
for the trapezoid inequality are also provided.


Keywords

complex \v{C}eby\v{s}ev functional, trapezoid inequality, inequalities for sums, series and integrals.

Full Text:

PDF

References


bibitem{CD} P. CERONE and S. S. DRAGOMIR: textit{New bounds for the v{C}%

ebyv{s}ev functional}, Appl. Math. Lett.textit{, }textbf{18} (2005),

-611.

bibitem{CD1} P. CERONE and S. S. DRAGOMIR: textit{A refinement of the Gr%

"{u}ss inequality and applications}, Tamkang J. Math. textbf{38 }(2007),

No. 1, 37-49. Preprint RGMIA Res. Rep. Coll., textbf{5 }(2) (2002), Art. 14.%

texttt{ [Online http://rgmia.org/papers/v5n2/RGIApp.pdf]}.

bibitem{CD2} P. CERONE and S. S. DRAGOMIR: textit{Some new Ostrowski-type

bounds for the v{C}ebyv{s}ev functional and applications}. J. Math.

Inequal. textbf{8} (2014), no. 1, 159--170.

bibitem{C} P. L. CHEBYSHEV: textit{Sur les expressions approximatives des

int`{e}grals d`{e}finis par les outres prises entre les m^{e}me limites},

Proc. Math. Soc. Charkovtextit{, }textbf{2 }(1882), 93-98.

bibitem{CS} X.-L. CHENG and J. SUN: textit{Note on the perturbed trapezoid

inequality}, J. Inequal. Pure Appl. Math.textit{, }textbf{3}(2) (2002),

Art. 29.

bibitem{SSDGr} S. S. DRAGOMIR: textit{A generalization of Gr"{u}ss's

inequality in inner product spaces and applications}. J. Math. Anal. Appl.

textbf{237} (1999), no. 1, 74--82.

bibitem{SSDIndian} S. S. DRAGOMIR: textit{Some integral inequalities of

Gruss type,} Indian J. Pure. Appl. Math. textbf{31} (2000), No. 4, 397-415.

bibitem{SSDJip} S. S. DRAGOMIR: textit{Some Gr"{u}ss type inequalities in

inner product spaces}. J. Inequal. Pure Appl. Math. textbf{4} (2003), no.

, Article 42, 10 pp. texttt{[Online

http://www.emis.de/journals/JIPAM/images/032_03_JIPAM/032_03.pdf].}

bibitem{SSDAnal} S. S. DRAGOMIR: textit{A refinement of Ostrowski's

inequality for the v{C}ebyv{s}ev functional and applications}. Analysis%

textit{ }(Munich) textbf{23} (2003), no. 4, 287--297.

bibitem{SSDPrep} S. S. DRAGOMIR: textit{Bounding the Cebysev functional

for functions of bounded variation and applications}, RGMIA Res. Rep. Coll.

(2011), Art. 5,texttt{ [Online http://rgmia.org/papers/v14/v14a5.pdf].}

bibitem{SSDApL} S. S. DRAGOMIR: textit{New Gr"{u}ss' type inequalities

for functions of bounded variation and applications}, Applied Mathematics

Letters textbf{25} (2012), 1475--1479.

bibitem{SSDGrComp} S. S. DRAGOMIR:textit{ Integral Gr"{u}ss' type

inequalities for complex-valued functions}, RGMIA Res. Rep. Coll. textbf{20}

(2017), Art. 13. texttt{[Online http://rgmia.org/papers/v20/v20a13.pdf].}

bibitem{DMC} S. S. DRAGOMIR M. S. MOSLEHIAN and Y. J. CHO: textit{Some

reverses of the Cauchy-Schwarz inequality for complex functions of

self-adjoint operators in Hilbert spaces.} Math. Inequal. Appl. textbf{17}

(2014), no. 4, 1365--1373. Preprint RGMIA Res. Rep. Colltextit{.}textbf{14}

(2011), Art. 84. texttt{[Online http://rgmia.org/papers/v14/v14a84.pdf].}

bibitem{G} G. GR"{U}SS: textit{"{U}ber das maximum des absoluten

Betrages von} $frac{1}{b-a}int_{a}^{b}fleft( xright) gleft( xright) dx-%

frac{1}{left( b-aright) ^{2}}int_{a}^{b}fleft( xright) dxcdot

int_{a}^{b}gleft( xright) dx,$ Math. Z.textit{ }textbf{39} (1934),

-226.

bibitem{He} C. H. HEIL: textit{Real Analysis Lecture Notes, Absolutely

Continuous and Singular Functions}, texttt{[Online

http://people.math.gatech.edu/symbol{126}heil/handouts/ac.pdf]}.

bibitem{Lupas} A. LUPAc{S}: textit{The best constant in an integral

inequality}, Mathematica (Cluj), Vol. textbf{15} (textbf{38}) (1973), No.

, 219-222.

bibitem{5b} A. M. OSTROWSKI: textit{On an integral inequality}, Aequat.

Math.textit{, }textbf{4} (1970), 358-373.




DOI: https://doi.org/10.22190/FUMI210429015D

Refbacks

  • There are currently no refbacks.




© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)