A FIXED POINT THEOREM FOR F-CONTRACTION MAPPINGS IN PARTIALLY ORDERED BANACH SPACES
Abstract
In this paper, we first introduce a new notion of an F-contraction mapping, also we establish a fixed point theorem for such mappings in partially ordered Banach spaces. Moreover, two examples are represented to show the compatibility of our results.
Keywords
Full Text:
PDFReferences
bibitem{Abbas}
{sc M. Abbas, T. Nazir, T. L. Aleksi'{c} {rm and} S. Radenovi'{c}}: textit{Common fixed points of set-valued $F$-contraction mappings on domain of sets endowed with directed graph}. Comput. Appl. Math. {bf 36}(4) (2017), 1607-1622.
bibitem{Abtahi}
{sc M. Abtahi, Z. Kadelburg {rm and} S. Radenovi'{c}}: textit{Fixed points and coupled fixed points in partially ordered $nu$-generalized metric spaces}. Appl. Gen. Topol. {bf19}(2) (2018), 189-201.
bibitem{Afkhami}
{sc M. Afkhami}: textit{The cozero-divisor graph of partially ordered sets}. Southeast Asian Bull. Math. {bf 44}(2) (2020), 297-306.
bibitem{Altun}
{sc I. Altun, G. Mınak {rm and} H. Dag}: textit{Multivalued $F$-contractions on complete metric
spaces}. J. Nonlinear Convex Anal. {bf16} (2015), 659-666.
bibitem{Altun1}
{sc I. Altun, G. Mınak {rm and} M. Olgun}: textit{Fixed points of multivalued nonlinear $F$-contractions
on complete metric spaces}. Nonlinear Anal. Model. Control {bf21}(2) (2016), 201-210.
bibitem{Ansari}
{sc A. L. Ansari, V. Gupta {rm and} N. Mani}: textit{$C$-class functions on some coupled fixed point theorems in partially ordered $S$-metric spaces}. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. {bf68}(2) (2019), 1694-1708.
bibitem{Bouzkoura}
{sc K. Bouzkoura {rm and} S. Benkaddour}: textit{Some Common Fixed Point Theorems in Partially Ordered Sets}. J. Appl. Math. (2020), Art. ID 4707962, 5 pp.
bibitem{Chen}
{sc L. Chen, S. Huang, C. Li {rm and} Y. Zhao}: textit{Several Fixed-Point Theorems for $F$-Contractions in Complete Branciari $b$-Metric Spaces and Applications}. J. Funct. Spaces (2020), Art. ID 7963242, 10 pp.
bibitem{Guo}
{sc D. Guo, Y. J. Cho {rm and} J. Zhu}: textit{Partial ordering methods in nonlinear problems}. Nova Science Publishers, Inc., Hauppauge, NY, 2004.
bibitem{Gupta}
{sc V. Gupta, G. Jungck {rm and} N. Mani}: textit{Some novel fixed point theorems in partially ordered metric spaces}. AIMS Math. {bf5}(5) (2020), 4444-4452.
bibitem{Hussain}
{sc A. Hussain, H. Al-Sulami, N. Hussain {rm and} H. Farooq}: textit{Newly fixed disc results using advanced contractions on $F$-metric space}. J. Appl. Anal. Comput. {bf10}(6) (2020), 2313-2322.
bibitem{Hussain1}
{sc N. Hussain, A. Latif, I. Iqbal {rm and} M. A. Kutbi}: textit{Fixed point results for multivalued $F$-contractions with application to integral and matrix equations}. J. Nonlinear Convex Anal. {bf20}(11) (2019), 2297-2311.
bibitem{Kadelburg}
{sc Z. Kadelburg {rm and} S. Radenovi'{c}}: textit{Notes on some recent papers concerning $F$-contractions in $b$-metric spaces}. Constr. Math. Anal. {bf1}(2) (2018), 108-112.
bibitem{Lin}
{sc X. Lin {rm and} Z. Zhao}: textit{Sign-changing solution for a third-order boundary-value problem in ordered Banach space with lattice structure}. Bound. Value Probl. {bf 2014} (2014), 132, 10 pp.
bibitem{Mohanta}
{sc S. K. Mohanta {rm and} S. Patra}: textit{Coincidence points for graph preserving generalized almost $F-G$-contractions in $b$-metric spaces}. Nonlinear Stud. {bf 27}(4) (2020), 897-914.
bibitem{Nieto}
{sc J. J. Nieto {rm and} R. R. Lopez}: textit{Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations}. Order {bf22}(3) (2005), 223-239.
bibitem{Nieto1}
{sc J. J. Nieto {rm and} R. R. Lopez}: textit{Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations}. Acta Math. Sin. (Engl. Ser.) {bf23}(12) (2007), 2205-2212.
bibitem{Ran}
{sc A. C. M. Ran {rm and} M. C. B. Reurings}: textit {A fixed point theorem in partially ordered sets and some applications to matrix equations}. Proc. Amer. Math. Soc. {bf 132}(5) (2004), 1435-1443.
bibitem{Shoaib}
{sc M. Shoaib, M. Sarwar {rm and} P. Kumam}: textit {Multi-valued fixed point theorem via $F$- contraction of Nadler type and application to functional and integral equations}. Bol. Soc. Parana. Mat. (3), {bf39}(4) (2021), 83-95.
bibitem{Sun}
{sc J. Sun {rm and} X. Liu}: textit {Computation of topological degree in ordered Banach spaces with lattice structure and its application to superlinear differential equations}. J. Math. Anal. Appl. {bf 348}(2) (2008), 927-937.
bibitem{Taheri}
{sc A. Taheri {rm and} A. P. Farajzadeh}: textit {A new generalization of $alpha$-type almost-$F$-contractions and $alpha$-type $F$-Suzuki contractions in metric spaces and their fixed point theorems}. Carpathian Math. Publ. {bf11}(2) (2019), 475-492.
bibitem{Tomar}
{sc A. Tomar {rm and} R. Sharma}: textit {Almost $alpha$-Hardy-Rogers-$F$-contractions and their applications}. Armen. J. Math. {bf11}(11) (2019), 19 pp.
bibitem{Wang}
{sc C. Wang, J. Mao {rm and} Z. Zhao}: textit {A fixed-point theorem for ordered contraction-type decreasing operators in Banach space with lattice structure}. J. Funct. Spaces 2020, Art. ID 3527430, 7 pp.
bibitem{Wardowski}
{sc D. Wardowski}: textit {Fixed points of a new type of contractive mappings in complete metric spaces}. Fixed Point Theory Appl. {bf 2012}(94) (2012), 6 pp.
bibitem{Wardowski2}
{sc D. Wardowski {rm and} N. V. Dung}: textit {Fixed points of $F$-weak contractions on complete metric spaces}. Demonstr. Math. {bf47}(1) (2014), 146-155.
bibitem{allen}
{sl D. Allen}: textit{Relations between the local and global
structure of fnite semigroups}. Ph. D. Thesis, University of
California, Berkeley, 1968.
bibitem{erdos}
{sc P. ErdH{o}s}: textit{On the distribution of the roots of
orthogonal polynomials}. In: Proceedings of a Conference on
Constructive Theory of Functions (G. Alexits, S. B. Steckhin, eds.),
Akademiai Kiado, Budapest, 1972, pp. 145--150.
bibitem{ostrowski}
{sc A. Ostrowski}: textit{Solution of Equations and Systems of
Equations}. Academic Press, New York, 1966.
bibitem{SaffVarga}
{sc E. B. Saff {rm and} R. S. Varga}: textit{On incomplete
polynomials II}. Pacific J. Math. {bf 92} (1981), 161--172.
DOI: https://doi.org/10.22190/FUMI210507079F
Refbacks
- There are currently no refbacks.
ISSN 0352-9665 (Print)