Archana Dewangan, Anil Kumar Dubey, Urmila Mishra, R P Dubey

DOI Number
First page
Last page


In this paper, we establish the existence and uniqueness of a fixed point of (α, β)-admissible almost z-contractions via simulation functions in metric-like spaces. Our results generalize and unify several fixed point theorem in literature.


fixed point, metric-like space, simulation function

Full Text:



H. Alsamir, W. Shatanawi, H. Ayad and H. Akhadkulov, Fixed Point results in metric like spaces via σ-simulation function, European Jour. Pure Appl. Math., 12(1) (2019), 88–100.

A. Amini-harandi, Metric like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), 10 pages.

H. Argoubi, B. Samet and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, Jour. Nonlinear Sci. Appl., 8(6)(2015), 1082-1094.

H. Aydi, A. Felhi and S. Sahmim, Fixed points of multivalued nonself almost contractions in metric-like spaces, Math. Sci (Springer), 9(2) (2015), 103–108.

H. Aydi, A. Felhi, E. Karapinar and S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miscolc Math. Notes, 19(1) (2018), 111–124.

H. Aydi and E. Karapinar, Fixed point results for generalized α−ψ contractions in metric-like spaces and applications, Electronic Journal of Differential Equations, 133(2015)(2015), 1–15.

G.V.R. Babu, M. L. Sandhya and M. V. R. Kameswari, A note on a fixed point theorem of Berinde on weak contractions, Carpathian Jour. of Mathmetics, 24(1) (2008), 8–12.

S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundam. Math. 3(1922)(1922), 133–181.

V. Berinde, Approximating fixed Point of weak contractions using the Picard iteration, Nonlinear Analysis Forum 9(1) (2004), 43–53.

V. Berinde, General constructive fixed point theorems for Ciric-type almost contractions in metric spaces, Carpathian Jour. of Math., 24(2) (2018), 10–19.

S. Chandok, Some fixed point theorems for (α, β)-admissible Geraghty type contractive mappings and related results, Mathematical Sciences, 9(3) (2015), 127–135.

A. Felhi, H. Aydi and D. Zhang, Fixed points for α-admissible contractive mappings via simulation functions, Jour. of Nonlinear Sciences and Application, 9(10),(2016), 5544–5560.

P. Hitzler and A. K. Seda, Dislocated topologies, Journal of Elecrical Engineering, 51(12) (2000), 1–12.

N. Hussain, E.Karapinar, P. Salimi and F. Akbar, α-admissible mappings and related fixed point theorems, Journal of Inequality and Appl., 2013 (2013), 114.

H. Isik, N. B. Gungor, C.Park and S. Y. Jang, Fixed point theorems for almost z-contraction with an application, Mathematics, 6(37) 2018, 1–8.

E. Karapinar, P. Kumam and P. Salimi, On α − ψ-Meir-Keeler Contractive mappings, Fixed Point Theory Appl., 94 (2013), 12 pages.

E. Karapinar, α − ψ- Geraghty contraction type mappings and some related fixed point results, Filomat, 28(1) (2014), 37–48.

F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (2015), 1189–1194.

X. Liu, M. Zhou, L. N. Mishra, V. N. Mishra and B. Damjanovi Common fixed point theorem of six self-mappings in Menger space using (CLRST) property, Open Mathematics, 16 (2018), 1423–1434.

H. Qawaqneh, M. S. M. Noorani, W. Shatanawi, H. Alsamir, Common fixed points for pairs of triangular α-admissible mappings, Journal of Nonlinear Sciences and Application 10 (2017), 6192–6204.

A. F. Roldan-Lopez-de-Hierro, E. Karapinar, C. Roldan-Lopez-de-Hierro and J. Martinez-Moreno, Coincidence point theorems on metric spaces via simulation functions, Jour. Comput. Appl. Math., 275 (2015), 345–355.

V. L. A. Rosa and P. Vetro, Common fixed points for α, ψ, φ-contractions in generalized metric spaces, Nonlinear Anal. Model. Control, 19(1) (2014), 43–54.

B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α − ψ-contractive type mappings, Jour. Nonlinear Anal.75 (2012), 2154-2165.

S. K. Tiwari and L. N. Mishra, Fixed point theorem for (α, β)-admissible mappings in metric-like space with respect to simulation function, Appl. Math. Inform. and Mech., 11(1) (2019), 21–32.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)