Nenad O. Vesić, Aleksandra Mihajlović

DOI Number
First page
Last page


This research is motivated by similarity of basic equations of $F$-planar mappings of symmetric affine connection space $\mathbb A_N$ involved by J. Mike� and N. S. Sinyukov, and which have been studied by Mike��s research group (I. Hinterleitner, P. Pe\v ska, \linebreak J. Str\'ansk\'a) and almost geodesic mappings (specially almost geodesic mappings of the second type) ofthe space $\mathbb A_N$ involved by N. S. Sinyukov and which have been studied by many authors. We used the formulas obtained by N. O. Vesic to obtain invariants for special $F$-planar mappings in this article. These invariants are analogous to invariants of geodesic mappings (the Thomas projective parameter and the Weyl projective tensor).


$F$-planar mapping, invariant, affine connection spaces

Full Text:



bibitem{berezovskimikes} {sc V. Berezovski, J. Mikev s}: texit{On the classification of almost geodesic mappings of affine-connected spaces}, Differential Geometry and Its Applications (Dubrovnik, 1988), Univ. Novi Sad, Novi Sad (1989), pp. 41--48.

bibitem{berezovskimikespeskariparova} {sc V. Berezovski, J. Mikev s, P. Pev ska, L. R'yparov'a}: textit{On Canonical $F$-planar Mappings of Spaces with Affine Connection}, Filomat {bf 33} (4) (2019), 1273--1278.

bibitem{hinterleitnermikes} {sc I. Hinterleitner, J. Mikev s}: textit{On Fundamental Equations of Geodesic Mappings and Their Generalizations}, J. Math. Sci., New York, {bf 174} (5) (2011), 537--554.

bibitem{hmp} {sc I. Hinterleitner, J. Mikev s, P. Pev ska}: textit{Fundamental equations of $F$-planar mappings}, Lobachevskii J. Math. {bf 38} (4) (2017), 653-659.

bibitem{hms} {sc I. Hinterleitner, J. Mikev s, J. Str'ansk'a}: textit{Infinitesimal $F$-planar transformations}, Russ. Math. {bf 50} (4) (2008), 13--18.

bibitem{mikesFplanar} {sc J. Mikev s}: textit{On special $F$-planar mappings of spaces with affine connection onto Riemannian spaces}, Vestnik Moskov. Univ. Ser. Mat. Mekh. {bf 1} (3) (1994), 18--24.

bibitem{mikesberezovskistepanovachuda} {sc J. Mikev s, V. Berezovski, E. Stepanova, H. Chud'a}: textit{Geodesic Mappings and Their Generalizations}, J. Math. Sci., New York, {bf 217} (5) (2016),607--623.

bibitem{mikespokorna} {sc J. Mikev s, O. Pokorn'a, G. Starko}: textit{On almost geodesic mappings $pi_2(e)$ onto Riemannian spaces}, Rendiconti del circolo matematico di Palermo, Serie II, Suppl. {bf 72} (2004), 151--157.

bibitem{mikessinyukovFplanar} {sc J. Mikev s, N. S. Sinyukov}: textit{On quasiplanar mappings of spaces of affine connection}, Sov. Math. {bf 27} (1) (1994), 63-70.

bibitem{mikes2015} {sc J. Mikev s et al.}: textit{Differential Geometry of Special Mappings}, Palack'y Univ. Press, Olomouc, 1ed. 2015, 2ed. 2019.

bibitem{petrovicFplanar} {sc M. Z. Petrovi'c, M. S. Stankovi'c}: textit{A note on $F$-planar mappings of manifolds with non-symmetric linear connection}, Int. J. Geom. Methods Mod. Phys., {bf 16} (5) (2019), DOI: 10.1142/S0219887819500786.

bibitem{sinjukov} {sc N. S. Sinyukov}: textit{Geodesic mappings of Riemannian spaces}, Nauka, Moscow, 1979.

bibitem{stankoviczlatanovicvelimirovic} {sc M. S. Stankovi'c, M. Lj. Zlatanovi'c, Lj. S. Velimirovi'c}: textit{Equitorsion holomorphically projective mappings of generalized K�hlerian space of the first kind}, Czechoslov. Math. J., {bf 60} (3) (2010), 635 -- 653.

bibitem{jainv1} {sc N. O. Vesi'c}: textit{Basic invariants of geometric mappings}, Miskolc Math. Notes, {bf 21} (1)(2020), 473-487.

bibitem{vesicstankovic} {sc N. O. Vesi'c, M. S. Stankovi'c}: textit{Second Type Almost Geodesic Mappings of Special Class and Their Invariants}, Filomat {bf 33} (4) (2019), 1201--1208.

bibitem{veszlatFplanar1} {sc N. O. Vesi'c, M. Lj. Zlatanovi'c}: textit{Invariants for Geodesic and $F$-Planar Mappings of Generalized Riemannian Spaces}, Quaestiones Mathematicae, (2020), DOI: 10.2989/16073606.2020.1757532.

bibitem{vesiczlatanovicavelimirovic} {sc N. O. Vesi'c, M. Lj. Zlatanovi'c, A. M. Velimirovi'c}: textit{Projective invariants for equitorsion geodesic mappings of semi-symmetric affine connection spaces}, J. Math. Anal. P., {bf 472} (2) (2019), 1571 -- 1580.

bibitem{zlatvanja1} {sc M. Lj. Zlatanovi'c, V. M. Stankovi'c}: textit{

Some invariants of holomorphically projective mappings

of generalized K"ahlerian spaces}, J. Math.

Anal. Appl., {bf 458} (2018), 601--610.



  • There are currently no refbacks.

© University of Niš | Created on November, 2013
ISSN 0352-9665 (Print)
ISSN 2406-047X (Online)