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ON UNIFICATION OF RARELY CONTINUOUS FUNCTIONS ∗

Bishwambhar Roy and Ritu Sen

Abstract. In 1979, V. Popa [23] first introduced the concept of rare continuity. In this
paper, we introduce a new class of functions, termed rarely μ-continuous functions,
which unifies different weak forms of rarely continuous functions and investigate some
of its properties.
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1. Introduction

The notion of rare continuity was first introduced by V. Popa in [23] which was
further studied by Long and Herrington [18] and Jafari [13, 14]. Certain weak forms
of rarely continuous functions, for example, rare quasi-continuity, rareα-continuity,
rare δs-continuity, rare pre-continuity, rare δ-continuity, rare �-continuity have been
introduced and studied by Popa and Noiri [24], Jafari [16], Caldas, Jafari, Moshokoa
and Noiri [4], Jafari [15], Caldas and Jafari [3], Caldas and Jafari [2] respectively.

The notion of generalized topological space was first introduced by A. Császár.
After that a large number of papers have been devoted for the investigation of
different properties of such spaces. We recall some notions defined in [5]. Let X
be a non-empty set, expX denotes the power set of X. We call a class μ � expX a
generalized topology [5], ( GT for short) if∅ ∈ μ and union of elements of μ belongs
to μ. A set X, with a GT μ on it is said to be a generalized topological space (GTS
for short) and is denoted by (X, μ).

For a GTS (X, μ), the elements of μ are called μ-open sets and the complement of
μ-open sets are called μ-closed sets. For A � X, we denote by cμ (A) the intersection
of all μ-closed sets containing A, i.e., the smallest μ-closed set containing A; and
by iμ (A) the union of all μ-open sets contained in A, i.e., the largest μ-open set
contained in A (see [5, 6]).

It is easy to observe that iμ and cμ are idempotent and monotonic, where γ :
expX→ expX is said to be idempotent iff A � B � X implies that γ(γ(A)) = γ(A) and
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monotonic iff γ(A) � γ(B). It is also well known from [6, 7] that if μ is a GT on X
and A � X, x ∈ X, then x ∈ cμ(A) iff x ∈M ∈ μ⇒M∩A � ∅ and cμ(X\A) = X\ iμ(A).

The purpose of this paper is to introduce the concept of rare μ-continuity which
unifies the existing class of weak forms of rarely continuous functions by a particu-
lar choice of GT. We have also investigated several properties of rarelyμ-continuous
functions. In this sequel the notion of I.μ-continuity has been introduced which
is then shown to be weaker than (μ, σ)-continuity and stronger than rarely μ-
continuous function. It can also be observed that the results obtained in some other
papers can be obtained from our results for a suitably chosen GT.

Hereafter, throughout the paper we shall use (X, μ) to refer to a generalized
topological space and (X, τ), (Y, σ) to be topological spaces unless otherwise stated.

2. Preliminaries

Let (X, τ) be a topological space. The δ-closure [28] of a subset A of (X, τ) is
denoted by clδ (A) and is defined by

{x ∈ X : A ∩U � ∅ for all regular open sets U containing x},
where a subset A is called regular open [27] if A = int(cl(A)). The set A is called
δ-closed if clδ (A) = A. The complement of a δ-closed set is called δ-open. It is
known from [28] that the family of all δ-open sets form a topology on X which
is smaller than the original topology τ. A subset A of X is called semi-open
[17] (resp. preopen [20], α-open [21], δ-semiopen [22]) if A � cl(int(A)) (resp.
A � int(cl(A)), A � int(cl(int(A))), A ⊆ cl(intδ(A))). The complement of a semi-open
(resp. preopen, α-open, δ-semiopen) set is called a semi-closed (resp. preclosed,
α-closed, δ-semiclosed) set. The collection of all semi-open (resp. preopen, α-open,
δ-open, δ-semiopen) sets in a topological space is denoted by SO(X) (resp. PO(X),
αO(X), δO(X), δSO(X)). We note that each of these collections forms a GT on X. A
subset A of a space X is called a

∧
-set [19] if it is equal to its kernel i.e., intersection

of all open superset of A. A is called a λ-closed set [1] if A = U ∩ V where U is a∧
-set and V is a closed set. The complement of a λ-closed set is called a λ-open set.

The family of all λ-open sets of a topological space is denoted by λO(X). A subset
A of X is called rare if int(A) = ∅. We shall use the symbol O( f (x),Y) to refer to the
collection of all open sets in the topological space Y containing f (x).

Definition 2.1. A function f : (X, τ)→ (Y, σ) is said to be rarely continuous [23] if
for each x in X and G ∈ O(Y, f (x)) there exists a rare set RG with G∩ cl(RG) = ∅, and
an open set U in X containing x such that f (U) � G ∪ RG.

Definition 2.2. A function f : (X, μ)→ (Y, σ) is said to be (μ, σ)-continuous [25] if
for each x ∈ X and each G ∈ O(Y, f (x)), there exists a μ-open set U containing x in
X such that f (U) � G.



On Unification of Rarely Continuous Functions 263

3. Rarely μ-continuous functions

Definition 3.1. A function f : (X, μ)→ (Y, σ) is said to be rarely μ-continuous if for
each x in X and G ∈ O(Y, f (x)) there exists a rare set RG with G ∩ cl(RG) = ∅, and a
μ-open set U in X containing x such that f (U) � G ∪ RG.

Remark 3.1. Let μ and λ be two GT’s on the set X such that μ � λ. If f : (X, μ) → (Y, σ) is
rarely μ-continuous then f : (X, λ)→ (Y, σ) is rarely λ-continuous.

Example 3.1. Let

X = {a, b, c}, σ = {∅, {a}, {a, b},X}, μ = {∅, {a, b}, {a, c},X}.
Then μ is a GT on the topological space (X, σ). It can be easily verified that the identity
function f : (X, μ)→ (X, σ) is rarely μ-continuous.

Theorem 3.1. For a function f : (X, μ)→ (Y, σ) the followings are equivalent:

(i) f is rarely μ-continuous at x.

(ii) For each set G ∈ O(Y, f (x)), there exists a μ-open set U in X containing x such that
int[ f (U)∩ (Y \ G)] = ∅.

(iii) For each G ∈ O(Y, f (x)), there exists a μ-open set U in X containing x such that
int[ f (U)] � cl(G).

(iv) For each G ∈ O(Y, f (x)), there exists a rare set RG with G ∩ cl(RG) = ∅ such that
x ∈ iμ ( f−1(G ∪ RG)).

(v) For each G ∈ O(Y, f (x)), there exists a rare set RG with cl(G) ∩ RG = ∅ such that
x ∈ iμ ( f−1(cl(G)∪ RG)).

(vi) For each G ∈ RO(Y, f (x)), there exists a rare set RG with G ∩ cl(RG) = ∅ such that
x ∈ iμ ( f−1(G ∪ RG)).

Proof. (i) ⇒ (ii) : Let G ∈ O(Y, f (x)). Then f (x) ∈ G � int(cl(G)) and int(cl(G)) ∈
O(Y, f (x)). Thus by (i) there exists a rare set RG with int(cl(G)) ∩ cl(RG) = ∅ and a
μ-open set U in X containing x such that f (U) � int(cl(G))∪ RG. We have

int[ f (U) ∩ (Y \ G)] = int[ f (U)]∩ int(Y \ G)
� int[int(cl(G))∪ RG] ∩ (Y \ cl(G))
� (cl(G)∪ int(RG)) ∩ (Y \ cl(G)) = ∅.

(ii)⇒ (iii) : It is straightforward.

(iii) ⇒ (i) : Let G ∈ O(Y, f (x)). Then by (iii), there exists a μ-open set U in X
containing x such that int[ f (U)] � cl(G). We have

f (U) = [ f (U) \ int( f (U))]∪ int( f (U)) � [ f (U) \ int( f (U))]∪ cl(G)
= [ f (U) \ int( f (U))]∪ G ∪ (cl(G) \ G)
= [( f (U) \ int( f (U)))∩ (Y \G)] ∪ G ∪ (cl(G) \ G).
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Set R∗ = [ f (U) \ int( f (U))]∩ (Y \G) and R∗∗ = (cl(G) \G). Then R∗ and R∗∗ are rare
sets. More RG = R∗ ∪ R∗∗ is a rare set such that cl(RG) ∩ G = ∅ and f (U) � G ∪ RG.
This shows that f is rarely μ-continuous.

(i) ⇒ (iv) : Suppose that G ∈ O(Y, f (x)). Then there exists a rare set RG with
G ∩ cl(RG) = ∅ and a μ-open set U in X containing x, such that f (U) � G ∪ RG. It
follows that x ∈ U � f−1(G ∪ RG). This implies that x ∈ iμ ( f−1(G ∪ RG)).

(iv) ⇒ (v): Suppose that G ∈ O(Y, f (x)). Then there exists a rare set RG with
G∩ cl(RG) = ∅ such that x ∈ iμ ( f−1(G∪RG)). Since G∩ cl(RG) = ∅, RG � Y\G, where
Y \ G = (Y \ cl(G))∪ (cl(G) \ G). Now, we have

RG � (RG ∪ (Y \ cl(G))∪ (cl(G) \ G)).

Set R∗ = RG∩ (Y\ cl(G)). It follows that R∗ is a rare set with cl(G)∩R∗ = ∅. Therefore

x ∈ iμ [ f−1(G ∪ RG)] � iμ [ f−1(cl(G) ∪ R∗)].

(v)⇒ (vi) : Assume that G ∈ RO(Y, f (x)). Then there exists a rare set RG with
cl(G)∩ RG = ∅ such that x ∈ iμ[ f−1(cl(G)∪ RG)]. Set R∗ = RG ∪ (cl(G) \G). It follows
that R∗ is a rare set and G ∩ cl(R∗) = ∅. Hence

x ∈ iμ [ f−1(cl(G)∪ RG)] = iμ [ f−1(G ∪ (cl(G) \ G) ∪ RG)] = iμ [ f−1(G ∪ R∗)].

(vi) ⇒ (ii): Let G ∈ O(Y, f (x)). By f (x) ∈ G � int(cl(G)) and the fact that
int(cl(G)) ∈ RO(Y), there exists a rare set RG with int(cl(G)) ∩ cl(RG) = ∅ such that
x ∈ iμ [ f−1(int(cl(G)) ∪ RG)]. Let U = iμ [ f−1(int(cl(G)) ∪ RG)]. Hence, x ∈ U ∈ μ and,
therefore f (U) � int(cl(G))∪ RG. Hence, we conclude

int[ f (U)∩ (Y \ G)] = ∅.

Theorem 3.2. A function f : (X, μ) → (Y, σ) is rarely μ-continuous if and only if
for each open set G � Y, there exists a rare set RG with G ∩ cl(RG) = ∅ such that
f−1(G) � iμ[ f−1(G ∪ RG)].

Proof. It follows from Theorem 3.1.

Definition 3.2. A function f : (X, μ) → (Y, σ) is said to be I.μ-continuous at x ∈ X
if for each set G ∈ O(Y, f (x)), there exists a μ-open set U in X containing x such
that int[ f (U)] � G. If f has this property at each point x ∈ X, then we say that f is
I.μ-continuous on X.

Remark 3.2. It should be noted that (μ, σ)-continuity implies I.μ-continuity and I.μ-continuity
implies rareμ-continuity. But the converses are not true as shown by the following examples.
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Example 3.2. Let

X = {a, b, c}, μ = {∅, {b}, {b, c}, {a, c},X}, σ = {∅,X, {a}, {b}, {a, b}}.
Then the identity function f : (X, μ)→ (X, σ) is I.μ-continuous but not (μ, σ)-continuous.

Example 3.3. Let

X = {a, b, c}, μ = {∅, {a, b}, {a, c},X}, σ = {∅, {c}, {a, c}, {b, c},X}.
Then μ is a GT on the topological space (X, σ). It can be easily verified that the identity
function f : (X, μ)→ (X, σ) is rarely μ-continuous but not I.μ-continuous.

Theorem 3.3. Let Y be a regular space. Then f : (X, μ)→ (Y, σ) is I.μ-continuous on X
if and only if f is rarely μ-continuous on X.

Proof. We prove only the sufficient condition since as the converse part follows
from Remark 3.2. Let f be rarely μ-continuous on X and x ∈ X. Suppose that
f (x) ∈ G, where G is an open set in Y. By the regularity of Y, there exists an open
set G1 ∈ O(Y, f (x)) such that cl(G1) � G. Since f is rarely μ-continuous, there exists
a μ-open set U in X containing x such that int[ f (U)] � cl(G1). This implies that
int[ f (U)] � G and therefore f is I.μ-continuous on X.

Definition 3.3. A function f : (X, μ)→ (Y, σ) is said to be μ-open if the image of a
μ-open set is open.

Definition 3.4. A function f : (X, μ) → (Y, σ) is said to be almost weakly μ-
continuous if for each open set G in Y containing f (x) there exists a μ-open set
U in X containing x such that f (U) � cl(G).

It also follows that every almost weakly μ-continuous function is rarely μ-
continuous. For the converse we have the next theorem.

Theorem 3.4. If f : (X, μ)→ (Y, σ) be a μ-open rarely μ-continuous function, then f is
almost weakly μ-continuous.

Proof. Suppose that x ∈ X and G ∈ O(Y, f (x)). Since f is rarely μ-continuous, there
exists a μ-open set U in X such that int( f (U)) � cl(G). Since f is μ-open, f (U) is
open and hence f (U) � cl(int( f (U))) � cl(G). This shows that f is almost weakly
μ-continuous.

Thus it follows that if f : (X, τ) → (Y, σ) be a λ-open, rarely λ-continuous
function, then f is also a weakly λ-continuous function [12].

Example 3.4. (a) Let

X = {a, b, c}, σ = {∅, {a}, {b, c},X}, μ = {∅, {a, b}, {a, c},X}.
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Then μ is a GT on the topological space (X, σ). It is easy to check that the identity function
f : (X, μ)→ (X, σ) is rarely μ-continuous but not almost weakly μ-continuous. It can also be
shown that f is not μ-open.

(b) Let
X = {a, b, c}, μ = {∅, {a}, {a, b}}, σ = {∅,X, {b}, {b, c}}.

Then the function f : (X, μ)→ (X, σ) defined by f (a) = b, f (b) = c, f (c) = a is μ-open but not
almost weakly μ-continuous. Also it is easy to check that f is not rarely μ continuous.

Definition 3.5. Let A = {Gi} be a class of subsets of a topological space (X, τ). By
rarely union sets [13] of A we mean {Gi ∪RGi }, where each RGi is a rare set such that
each of {Gi ∩ cl(RGi)} is empty. Recall that a subset B of X is said to be rarely almost
compact relative to X [13] if for every cover of B by open sets of X, there exists a
finite subfamily whose rarely union sets cover B. A topological space X is said to
be rarely almost compact if the set X is rarely almost compact relative to X.

Definition 3.6. [26] A subset K of a GTS (X, μ) is said to be μ-compact relative to
X if every cover of K by μ-open sets in X has a finite subcover. A space X is said to
be μ-compact if X is μ-compact relative to X.

Theorem 3.5. Let f : (X, μ)→ (Y, σ) be rarely μ-continuous and K be μ-compact relative
to X. Then f (K) is rarely almost compact relative to Y.

Proof. Suppose that Ω is an open cover of f (K). Let B be the set of all V in Ω such
that V ∩ f (K) � ∅. Then B is an open cover of f (K). Hence for each k ∈ K, there
is some Vk ∈ B such that f (k) ∈ Vk. Since f is rarely μ-continuous, there exists
a rare set RVk with Vk ∩ cl(RVk ) = ∅ and a μ-open set Uk containing k such that
f (Uk) � Vk ∪ RVk . Hence there is a finite subfamily {Uk : k ∈ Δ} which covers K,
whereΔ is a finite subset of K. The subfamily {Vk∪RVk : k ∈ Δ} also covers f (K).

Theorem 3.6. Let f : (X, τ)→ (Y, σ) be rarely continuous and μ be a GT on X such that
τ � μ. Then f : (X, μ)→ (Y, σ) is rarely μ-continuous.

Proof. Suppose that x ∈ X and G ∈ O(Y, f (x)). Since f is rarely continuous, by
Theorem 1 of [23] there exists an open set U in X containing x such that int( f (U)) �
cl(G). Since τ � μ, U is a μ-open set containing x. It then follows from Theorem 3.1
that f is rarely μ-continuous.

Example 3.5. Let

X = {a, b, c}, τ = {∅,X, {a}, {a, b}}, σ = {∅,X, {a}, {b}, {a, b},X}.
Then the identity function f : (X, τ)→ (Y, σ) is rarely continuous. If we take

μ = {∅,X, {a, b}, {a, c},X}
then f is not rarely μ-continuous.
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Lemma 3.1. [18] If � : Y→ Z is continuous and one-to-one, then � preserves rare sets.

Theorem 3.7. If f : (X, μ) → (Y, σ) is rarely μ-continuous and � : (Y, σ) → (Z, τ) is a
continuous injection, then � ◦ f : (X, μ)→ (Z, τ) is rarely μ-continuous.

Proof. Suppose that x ∈ X and (� ◦ f )(x) ∈ V, where V is an open set in Z. By
hypothesis, g is continuous, therefore G = �−1(V) is an open set in Y containing f (x)
such that �(G) � V. Since f is rarely μ-continuous, there exists a rare set RG with
G∩ cl(RG) = ∅ and a μ-open set U containing x such that f (U) � G∪ RG. It follows
from Lemma 3.1 that �(RG) is a rare set in Z. Since RG is a subset of Y \ G and � is
injective, we have cl(�(RG)) ∩V = ∅. This implies that

(� ◦ f )(U) � V ∪ �(RG).

Hence we obtain the result.

Example 3.6. Let

X = {a, b, c}, σ = {∅, {b}, {a, c},X}, μ = {∅, {a, b}, {a, c},X}.
Then μ is a GT on the topological space (X, σ). It can be easily verified that the identity
function f : (X, μ)→ (X, σ) is rarely μ-continuous. Let τ = {∅,X, {a}, {b, c}}. Then � : (X, σ)→
(X, τ) defined by �(a) = �(c) = a, �(b) = b is continuous but

� ◦ f : (X, μ)→ (X, τ)

is not rarely μ-continuous.

Definition 3.7. A topological space (X, τ) is called r-separated [14] if for every pair
of distinct points x and y in X, there exist open sets Ux and Uy containing x and y,
respectively, and rare sets RUx , RUy with

Ux ∩ cl(RUx) = ∅ and Uy ∩ cl(RUy) = ∅

such that (Ux ∪ RUx ) ∩ (Uy ∪ RUy ) = ∅.

Definition 3.8. A GTS (X, μ) is said to be μ-T2 [8] if for any distinct pair of points
x and y in X, there exist disjoint μ-open sets U and V in X containing x and y,
respectively.

Theorem 3.8. If (Y, σ) is r-separated and f : (X, μ) → (Y, σ) is a rarely μ-continuous
injection, then (X, μ) is μ-T2 .

Proof. Let x and y be any distinct points in X. Then f (x) � f (y) (as f is injective).
Thus there exist open sets Gx and Gy in Y containing f (x) and f (y), respectively,
and rare sets RGx and RGy with

Gx ∩ cl(RGx) = ∅ and Gy ∩ cl(RGy) = ∅
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such that (Gx ∪ RGx) ∩ (Gy ∩ RGy ) = ∅. Therefore

iμ [ f−1(Gx ∪ RGx)] ∩ iμ[ f−1(Gy ∪ RGy)] = ∅.

By Theorem 3.5 we have

x ∈ f−1(Gx) � iμ [ f−1(Gx ∪ RGx)] and y ∈ f −1(Gy) � iμ [ f−1(Gy ∪ RGy)].

Since iμ [ f−1(Gx ∩ RGx)] and iμ[ f−1(Gy ∩ RGy)] are two μ-open sets, (X, μ) is a μ-T2

space.

4. Conclusion

Let μ be a GT on the topological space (X, τ). Then the definitions of various
types of rarely continuous functions f : (X, τ)→ (Y, σ) may be introduced from the
definition of rarely μ-continuous function by replacing the generalized topologies
μ on X suitably. In fact if μ is replaced by τ (resp. SO(X), PO(X), αO(X), δO(X),
δSO(X), λO(X)) then we can obtain almost all the results of [23] (resp. [24, 15,
16, 3, 4, 9]). We also observe that every rarely s-precontinuous function [11] is
weakly s-precontinuous [11, 12] if f is r-preopen [11]. If μ = PO(X), then every
rarely s-precontinuous and hence every weakly s-precontinuous function is rarely
μ-precontinuous.

Also if we take μ = λO(X) then almost weakly μ-continuity reduces to weakly
λ-continuity of [10]. Thus every weakly λ-continuous function [10] is rare λ-
continuous [9] and hence rare μ-continuous.
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6. Á. Császár: Generalized open sets in generalized topologies. Acta Math. Hungar. 106
(2005), 53–66.

7. Á. Császár: δ- and θ-modifications of generalized topologies. Acta Math. Hungar. 120
(2008), 275–279.

8. E. Ekici: Generalized hyperconnectedness. Acta Math. Hungar. 133 (2011), 140–147.



On Unification of Rarely Continuous Functions 269

9. E. Ekici and S. Jafari: On a new weaker form of Popa’s rare continuity via λ-open sets.
Kuwait Journal of Science and Engineering 36(1A) (2009), 33–41.

10. E. Ekici and S. Jafari and M. Caldas and T. Noiri: Weakly λ-continuous functions.
Novi Sad Jour. Math. 38(2) (2008), 47–56.

11. E. Ekici and S. Jafari: On rare s-precontinuity for multifunctions. Demonstratio Math-
ematica 46(2)(2013), 395–403.

12. E. Ekici and J. H. Park: On weakly s-precontinuous multifunctions. Arabian Jour. for
Science and engineering 32(1A) (2007), 83–92.

13. S. Jafari: A note on rarely contnuous functions. Univ. Bacau. Stud. Cerc. St. Ser. Mat.,
5 (1995), 29–34.

14. S. Jafari: On some properties of rarely continuous functions. Univ. Bacau. Stud. Cerc.
St. Ser. Mat. 7 (1997), 65–73.

15. S. Jafari: On rarely pre continuous functions. Far East J. Math. Sci. (FJMS) special
volume, Part III (2000) 305–314.

16. S. Jafari: Rare α-coninuity. Bull. Malays. Math. Sci. Soc. 28(2) (2005), 157–161.

17. N. Levine: Semi-open sets and semi-continuity in topological spaces. Amer. Math.
Monthly 70 (1963), 36–41.

18. P. E. Long and L. L. Herrington: Properties of rarely continuous functions. Glasnik
Mat. Ser. III, 17(37) (1982), 147–153.

19. H. Maki: Generalized λ-sets and the associated closure operator. The Special Issue in
Commemoration of Prof. Kazusada Ikeda ’s Retirement, 1986, 139–146.

20. A. S. Mashhour and M. E. Abd El-Monsef and S. N. El-Deeb: On precontinuous and
weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.

21. O. Njåstad: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961–970.

22. J. H. Park and B. Y. Lee and M. J. Son: On δ-semiopen sets in topological space. J. Indian
Acad. Math. 19 (1997), 59–67.

23. V. Popa: Sur certain decomposition de la continuite dans les espaces topologiques. Glasnik
Mat. Ser. III 14(34) (1979), 359–362.

24. V. Popa and T. Noiri: Some properties of rarely quasi continuous functions. An. Univ.
Timisoara. Ser. Stiint. Mat.29(1) (1991), 65–71.

25. B. Roy and R. Sen: On a type of decomposition of continuity. Afrika Math. (accepted
and to appear).

26. B. Roy and S. Jafari: On covering properties via generalized open sets. Ann. Univ. Sci.
Budapest Sec. Math. 55 (2012), 57–65.

27. M. Stone: Appliation of the theory of Boolean rings to general topology. Trans. Amer.
Math. Soc. 41 (1974), 374–381.
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