ON UNIFICATION OF RARELY CONTINUOUS FUNCTIONS *

Bishwambhar Roy and Ritu Sen

Abstract. In 1979, V. Popa [23] first introduced the concept of rare continuity. In this paper, we introduce a new class of functions, termed rarely μ -continuous functions, which unifies different weak forms of rarely continuous functions and investigate some of its properties.

Keywords: μ -open set; rare set; rarely μ -continuous function

1. Introduction

The notion of rare continuity was first introduced by V. Popa in [23] which was further studied by Long and Herrington [18] and Jafari [13, 14]. Certain weak forms of rarely continuous functions, for example, rare quasi-continuity, rare α -continuity, rare δs -continuity, rare pre-continuity, rare δ -continuity, rare *g*-continuity have been introduced and studied by Popa and Noiri [24], Jafari [16], Caldas, Jafari, Moshokoa and Noiri [4], Jafari [15], Caldas and Jafari [3], Caldas and Jafari [2] respectively.

The notion of generalized topological space was first introduced by A. Császár. After that a large number of papers have been devoted for the investigation of different properties of such spaces. We recall some notions defined in [5]. Let *X* be a non-empty set, *expX* denotes the power set of *X*. We call a class $\mu \subseteq expX$ a generalized topology [5], (GT for short) if $\emptyset \in \mu$ and union of elements of μ belongs to μ . A set *X*, with a GT μ on it is said to be a generalized topological space (GTS for short) and is denoted by (*X*, μ).

For a GTS (*X*, μ), the elements of μ are called μ -open sets and the complement of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing *A*, i.e., the smallest μ -closed set containing *A*; and by $i_{\mu}(A)$ the union of all μ -open sets contained in *A*, i.e., the largest μ -open set contained in *A* (see [5, 6]).

It is easy to observe that i_{μ} and c_{μ} are idempotent and monotonic, where γ : $expX \rightarrow expX$ is said to be idempotent iff $A \subseteq B \subseteq X$ implies that $\gamma(\gamma(A)) = \gamma(A)$ and

Received January 04, 2014.; Accepted July 01, 2014.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C05; Secondary 54C08.

^{*}the first author acknowledges the financial support from UGC, New Delhi.

monotonic iff $\gamma(A) \subseteq \gamma(B)$. It is also well known from [6, 7] that if μ is a GT on *X* and $A \subseteq X$, $x \in X$, then $x \in c_{\mu}(A)$ iff $x \in M \in \mu \Rightarrow M \cap A \neq \emptyset$ and $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$.

The purpose of this paper is to introduce the concept of rare μ -continuity which unifies the existing class of weak forms of rarely continuous functions by a particular choice of GT. We have also investigated several properties of rarely μ -continuous functions. In this sequel the notion of I. μ -continuity has been introduced which is then shown to be weaker than (μ , σ)-continuity and stronger than rarely μ continuous function. It can also be observed that the results obtained in some other papers can be obtained from our results for a suitably chosen GT.

Hereafter, throughout the paper we shall use (X, μ) to refer to a generalized topological space and (X, τ) , (Y, σ) to be topological spaces unless otherwise stated.

2. Preliminaries

Let (X, τ) be a topological space. The δ -closure [28] of a subset A of (X, τ) is denoted by $cl_{\delta}(A)$ and is defined by

 $\{x \in X : A \cap U \neq \emptyset \text{ for all regular open sets } U \text{ containing } x\},\$

where a subset A is called regular open [27] if A = int(cl(A)). The set A is called δ -closed if $cl_{\delta}(A) = A$. The complement of a δ -closed set is called δ -open. It is known from [28] that the family of all δ -open sets form a topology on *X* which is smaller than the original topology τ . A subset A of X is called semi-open [17] (resp. preopen [20], α -open [21], δ -semiopen [22]) if $A \subseteq cl(int(A))$ (resp. $A \subseteq int(cl(A)), A \subseteq int(cl(int(A))), A \subseteq cl(int_{\delta}(A)))$. The complement of a semi-open (resp. preopen, α -open, δ -semiopen) set is called a semi-closed (resp. preclosed, α -closed, δ -semiclosed) set. The collection of all semi-open (resp. preopen, α -open, δ -open, δ -semiopen) sets in a topological space is denoted by SO(X) (resp. PO(X), $\alpha O(X), \delta O(X), \delta SO(X)$. We note that each of these collections forms a GT on X. A subset A of a space X is called a \wedge -set [19] if it is equal to its kernel i.e., intersection of all open superset of A. A is called a λ -closed set [1] if $A = U \cap V$ where U is a \wedge -set and *V* is a closed set. The complement of a λ -closed set is called a λ -open set. The family of all λ -open sets of a topological space is denoted by $\lambda O(X)$. A subset A of X is called rare if $int(A) = \emptyset$. We shall use the symbol O(f(x), Y) to refer to the collection of all open sets in the topological space *Y* containing f(x).

Definition 2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be rarely continuous [23] if for each *x* in *X* and $G \in O(Y, f(x))$ there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$, and an open set *U* in *X* containing *x* such that $f(U) \subseteq G \cup R_G$.

Definition 2.2. A function $f : (X, \mu) \to (Y, \sigma)$ is said to be (μ, σ) -continuous [25] if for each $x \in X$ and each $G \in O(Y, f(x))$, there exists a μ -open set U containing x in X such that $f(U) \subseteq G$.

3. Rarely *µ*-continuous functions

Definition 3.1. A function $f : (X, \mu) \to (Y, \sigma)$ is said to be rarely μ -continuous if for each x in X and $G \in O(Y, f(x))$ there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$, and a μ -open set U in X containing x such that $f(U) \subseteq G \cup R_G$.

Remark 3.1. Let μ and λ be two GT's on the set *X* such that $\mu \subseteq \lambda$. If $f : (X, \mu) \to (Y, \sigma)$ is rarely μ -continuous then $f : (X, \lambda) \to (Y, \sigma)$ is rarely λ -continuous.

Example 3.1. Let

$$X = \{a, b, c\}, \ \sigma = \{\emptyset, \{a\}, \{a, b\}, X\}, \ \mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}.$$

Then μ is a GT on the topological space (X, σ) . It can be easily verified that the identity function $f : (X, \mu) \to (X, \sigma)$ is rarely μ -continuous.

Theorem 3.1. For a function $f : (X, \mu) \to (Y, \sigma)$ the followings are equivalent:

(i) f is rarely μ -continuous at x.

(ii) For each set $G \in O(Y, f(x))$, there exists a μ -open set U in X containing x such that $int[f(U) \cap (Y \setminus G)] = \emptyset$.

(iii) For each $G \in O(Y, f(x))$, there exists a μ -open set U in X containing x such that $int[f(U)] \subseteq cl(G)$.

(iv) For each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that $x \in i_u(f^{-1}(G \cup R_G))$.

(v) For each $G \in O(Y, f(x))$, there exists a rare set R_G with $cl(G) \cap R_G = \emptyset$ such that $x \in i_u(f^{-1}(cl(G) \cup R_G))$.

(vi) For each $G \in RO(Y, f(x))$, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that $x \in i_{\mu}(f^{-1}(G \cup R_G))$.

Proof. (i) \Rightarrow (ii) : Let $G \in O(Y, f(x))$. Then $f(x) \in G \subseteq int(cl(G))$ and $int(cl(G)) \in O(Y, f(x))$. Thus by (i) there exists a rare set R_G with $int(cl(G)) \cap cl(R_G) = \emptyset$ and a μ -open set U in X containing x such that $f(U) \subseteq int(cl(G)) \cup R_G$. We have

$$int[f(U) \cap (Y \setminus G)] = int[f(U)] \cap int(Y \setminus G)$$
$$\subseteq int[int(cl(G)) \cup R_G] \cap (Y \setminus cl(G))$$
$$\subseteq (cl(G) \cup int(R_G)) \cap (Y \setminus cl(G)) = \emptyset.$$

(ii) \Rightarrow (iii) : It is straightforward.

(iii) \Rightarrow (i) : Let $G \in O(Y, f(x))$. Then by (iii), there exists a μ -open set U in X containing x such that $int[f(U)] \subseteq cl(G)$. We have

$$\begin{aligned} f(U) &= [f(U) \setminus int(f(U))] \cup int(f(U)) \subseteq [f(U) \setminus int(f(U))] \cup cl(G) \\ &= [f(U) \setminus int(f(U))] \cup G \cup (cl(G) \setminus G) \\ &= [(f(U) \setminus int(f(U))) \cap (Y \setminus G)] \cup G \cup (cl(G) \setminus G). \end{aligned}$$

Set $R^* = [f(U) \setminus int(f(U))] \cap (Y \setminus G)$ and $R^{**} = (cl(G) \setminus G)$. Then R^* and R^{**} are rare sets. More $R_G = R^* \cup R^{**}$ is a rare set such that $cl(R_G) \cap G = \emptyset$ and $f(U) \subseteq G \cup R_G$. This shows that f is rarely μ -continuous.

(i) \Rightarrow (iv) : Suppose that $G \in O(Y, f(x))$. Then there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and a μ -open set U in X containing x, such that $f(U) \subseteq G \cup R_G$. It follows that $x \in U \subseteq f^{-1}(G \cup R_G)$. This implies that $x \in i_{\mu}(f^{-1}(G \cup R_G))$.

(iv) \Rightarrow (v): Suppose that $G \in O(Y, f(x))$. Then there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that $x \in i_{\mu}(f^{-1}(G \cup R_G))$. Since $G \cap cl(R_G) = \emptyset$, $R_G \subseteq Y \setminus G$, where $Y \setminus G = (Y \setminus cl(G)) \cup (cl(G) \setminus G)$. Now, we have

$$R_G \subseteq (R_G \cup (Y \setminus cl(G)) \cup (cl(G) \setminus G)).$$

Set $R^* = R_G \cap (Y \setminus cl(G))$. It follows that R^* is a rare set with $cl(G) \cap R^* = \emptyset$. Therefore

$$x \in i_{\mu}[f^{-1}(G \cup R_G)] \subseteq i_{\mu}[f^{-1}(cl(G) \cup R^*)].$$

(v) \Rightarrow (vi) : Assume that $G \in RO(Y, f(x))$. Then there exists a rare set R_G with $cl(G) \cap R_G = \emptyset$ such that $x \in i_{\mu}[f^{-1}(cl(G) \cup R_G)]$. Set $R^* = R_G \cup (cl(G) \setminus G)$. It follows that R^* is a rare set and $G \cap cl(R^*) = \emptyset$. Hence

$$x \in i_{u}[f^{-1}(cl(G) \cup R_{G})] = i_{u}[f^{-1}(G \cup (cl(G) \setminus G) \cup R_{G})] = i_{u}[f^{-1}(G \cup R^{*})].$$

(vi) ⇒ (ii): Let $G \in O(Y, f(x))$. By $f(x) \in G \subseteq int(cl(G))$ and the fact that $int(cl(G)) \in RO(Y)$, there exists a rare set R_G with $int(cl(G)) \cap cl(R_G) = \emptyset$ such that $x \in i_{\mu}[f^{-1}(int(cl(G)) \cup R_G)]$. Let $U = i_{\mu}[f^{-1}(int(cl(G)) \cup R_G)]$. Hence, $x \in U \in \mu$ and, therefore $f(U) \subseteq int(cl(G)) \cup R_G$. Hence, we conclude

$$int[f(U) \cap (Y \setminus G)] = \emptyset.$$

	_	-	-	-

Theorem 3.2. A function $f : (X, \mu) \to (Y, \sigma)$ is rarely μ -continuous if and only if for each open set $G \subseteq Y$, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ such that $f^{-1}(G) \subseteq i_{\mu}[f^{-1}(G \cup R_G)]$.

Proof. It follows from Theorem 3.1.

Definition 3.2. A function $f : (X, \mu) \to (Y, \sigma)$ is said to be *I*. μ -continuous at $x \in X$ if for each set $G \in O(Y, f(x))$, there exists a μ -open set U in X containing x such that $int[f(U)] \subseteq G$. If f has this property at each point $x \in X$, then we say that f is I. μ -continuous on X.

Remark 3.2. It should be noted that (μ, σ) -continuity implies I. μ -continuity and I. μ -continuity implies rare μ -continuity. But the converses are not true as shown by the following examples.

Example 3.2. Let

$$X = \{a, b, c\}, \ \mu = \{\emptyset, \{b\}, \{b, c\}, \{a, c\}, X\}, \ \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$$

Then the identity function $f : (X, \mu) \to (X, \sigma)$ is I. μ -continuous but not (μ, σ) -continuous.

Example 3.3. Let

$$X = \{a, b, c\}, \ \mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}, \ \sigma = \{\emptyset, \{c\}, \{a, c\}, \{b, c\}, X\}.$$

Then μ is a GT on the topological space (X, σ). It can be easily verified that the identity function $f : (X, \mu) \to (X, \sigma)$ is rarely μ -continuous but not I. μ -continuous.

Theorem 3.3. Let *Y* be a regular space. Then $f : (X, \mu) \to (Y, \sigma)$ is I. μ -continuous on *X* if and only if *f* is rarely μ -continuous on *X*.

Proof. We prove only the sufficient condition since as the converse part follows from Remark 3.2. Let *f* be rarely μ -continuous on *X* and $x \in X$. Suppose that $f(x) \in G$, where *G* is an open set in *Y*. By the regularity of *Y*, there exists an open set $G_1 \in O(Y, f(x))$ such that $cl(G_1) \subseteq G$. Since *f* is rarely μ -continuous, there exists a μ -open set *U* in *X* containing *x* such that $int[f(U)] \subseteq cl(G_1)$. This implies that $int[f(U)] \subseteq G$ and therefore *f* is I. μ -continuous on *X*.

Definition 3.3. A function $f : (X, \mu) \to (Y, \sigma)$ is said to be μ -open if the image of a μ -open set is open.

Definition 3.4. A function $f : (X, \mu) \to (Y, \sigma)$ is said to be almost weakly μ continuous if for each open set *G* in *Y* containing *f*(*x*) there exists a μ -open set *U* in *X* containing *x* such that $f(U) \subseteq cl(G)$.

It also follows that every almost weakly μ -continuous function is rarely μ -continuous. For the converse we have the next theorem.

Theorem 3.4. If $f : (X, \mu) \to (Y, \sigma)$ be a μ -open rarely μ -continuous function, then f is almost weakly μ -continuous.

Proof. Suppose that $x \in X$ and $G \in O(Y, f(x))$. Since f is rarely μ -continuous, there exists a μ -open set U in X such that $int(f(U)) \subseteq cl(G)$. Since f is μ -open, f(U) is open and hence $f(U) \subseteq cl(int(f(U))) \subseteq cl(G)$. This shows that f is almost weakly μ -continuous. \Box

Thus it follows that if $f : (X, \tau) \to (Y, \sigma)$ be a λ -open, rarely λ -continuous function, then f is also a weakly λ -continuous function [12].

Example 3.4. (a) Let

$$X = \{a, b, c\}, \ \sigma = \{\emptyset, \{a\}, \{b, c\}, X\}, \ \mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}.$$

Then μ is a GT on the topological space (X, σ) . It is easy to check that the identity function $f : (X, \mu) \to (X, \sigma)$ is rarely μ -continuous but not almost weakly μ -continuous. It can also be shown that f is not μ -open.

(b) Let

 $X = \{a, b, c\}, \ \mu = \{\emptyset, \{a\}, \{a, b\}\}, \ \sigma = \{\emptyset, X, \{b\}, \{b, c\}\}.$

Then the function $f : (X, \mu) \to (X, \sigma)$ defined by f(a) = b, f(b) = c, f(c) = a is μ -open but not almost weakly μ -continuous. Also it is easy to check that f is not rarely μ continuous.

Definition 3.5. Let $A = \{G_i\}$ be a class of subsets of a topological space (X, τ) . By rarely union sets [13] of A we mean $\{G_i \cup R_{G_i}\}$, where each R_{G_i} is a rare set such that each of $\{G_i \cap cl(R_{G_i})\}$ is empty. Recall that a subset B of X is said to be rarely almost compact relative to X [13] if for every cover of B by open sets of X, there exists a finite subfamily whose rarely union sets cover B. A topological space X is said to be rarely almost compact if the set X is rarely almost compact relative to X.

Definition 3.6. [26] A subset *K* of a GTS (X, μ) is said to be μ -compact relative to *X* if every cover of *K* by μ -open sets in *X* has a finite subcover. A space *X* is said to be μ -compact if *X* is μ -compact relative to *X*.

Theorem 3.5. Let $f : (X, \mu) \to (Y, \sigma)$ be rarely μ -continuous and K be μ -compact relative to X. Then f(K) is rarely almost compact relative to Y.

Proof. Suppose that Ω is an open cover of f(K). Let *B* be the set of all *V* in Ω such that $V \cap f(K) \neq \emptyset$. Then *B* is an open cover of f(K). Hence for each $k \in K$, there is some $V_k \in B$ such that $f(k) \in V_k$. Since *f* is rarely μ -continuous, there exists a rare set R_{V_k} with $V_k \cap cl(R_{V_k}) = \emptyset$ and a μ -open set U_k containing *k* such that $f(U_k) \subseteq V_k \cup R_{V_k}$. Hence there is a finite subfamily $\{U_k : k \in \Delta\}$ which covers *K*, where Δ is a finite subset of *K*. The subfamily $\{V_k \cup R_{V_k} : k \in \Delta\}$ also covers f(K). \Box

Theorem 3.6. Let $f : (X, \tau) \to (Y, \sigma)$ be rarely continuous and μ be a *GT* on *X* such that $\tau \subseteq \mu$. Then $f : (X, \mu) \to (Y, \sigma)$ is rarely μ -continuous.

Proof. Suppose that $x \in X$ and $G \in O(Y, f(x))$. Since f is rarely continuous, by Theorem 1 of [23] there exists an open set U in X containing x such that $int(f(U)) \subseteq cl(G)$. Since $\tau \subseteq \mu$, U is a μ -open set containing x. It then follows from Theorem 3.1 that f is rarely μ -continuous. \Box

Example 3.5. Let

$$X = \{a, b, c\}, \ \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, \ \sigma = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, X\}.$$

Then the identity function $f: (X, \tau) \to (Y, \sigma)$ is rarely continuous. If we take

$$\mu = \{ \emptyset, X, \{a, b\}, \{a, c\}, X \}$$

then *f* is not rarely μ -continuous.

Lemma 3.1. [18] If $g: Y \to Z$ is continuous and one-to-one, then g preserves rare sets.

Theorem 3.7. If $f : (X, \mu) \to (Y, \sigma)$ is rarely μ -continuous and $g : (Y, \sigma) \to (Z, \tau)$ is a continuous injection, then $q \circ f : (X, \mu) \to (Z, \tau)$ is rarely μ -continuous.

Proof. Suppose that $x \in X$ and $(g \circ f)(x) \in V$, where *V* is an open set in *Z*. By hypothesis, g is continuous, therefore $G = g^{-1}(V)$ is an open set in *Y* containing f(x) such that $g(G) \subseteq V$. Since *f* is rarely μ -continuous, there exists a rare set R_G with $G \cap cl(R_G) = \emptyset$ and a μ -open set *U* containing *x* such that $f(U) \subseteq G \cup R_G$. It follows from Lemma 3.1 that $g(R_G)$ is a rare set in *Z*. Since R_G is a subset of $Y \setminus G$ and *g* is injective, we have $cl(g(R_G)) \cap V = \emptyset$. This implies that

$$(q \circ f)(U) \subseteq V \cup g(R_G).$$

Hence we obtain the result. \Box

Example 3.6. Let

$$X = \{a, b, c\}, \ \sigma = \{\emptyset, \{b\}, \{a, c\}, X\}, \ \mu = \{\emptyset, \{a, b\}, \{a, c\}, X\}.$$

Then μ is a GT on the topological space (X, σ) . It can be easily verified that the identity function $f : (X, \mu) \to (X, \sigma)$ is rarely μ -continuous. Let $\tau = \{\emptyset, X, \{a\}, \{b, c\}\}$. Then $g : (X, \sigma) \to (X, \tau)$ defined by g(a) = g(c) = a, g(b) = b is continuous but

$$q \circ f : (X, \mu) \to (X, \tau)$$

is not rarely μ -continuous.

Definition 3.7. A topological space (X, τ) is called *r*-separated [14] if for every pair of distinct points *x* and *y* in *X*, there exist open sets U_x and U_y containing *x* and *y*, respectively, and rare sets R_{U_x} , R_{U_y} with

$$U_x \cap cl(R_{U_x}) = \emptyset$$
 and $U_y \cap cl(R_{U_y}) = \emptyset$

such that $(U_x \cup R_{U_y}) \cap (U_y \cup R_{U_y}) = \emptyset$.

Definition 3.8. A GTS (X, μ) is said to be μ - T_2 [8] if for any distinct pair of points x and y in X, there exist disjoint μ -open sets U and V in X containing x and y, respectively.

Theorem 3.8. If (Y, σ) is *r*-separated and $f : (X, \mu) \to (Y, \sigma)$ is a rarely μ -continuous injection, then (X, μ) is μ - T_2 .

Proof. Let *x* and *y* be any distinct points in *X*. Then $f(x) \neq f(y)$ (as *f* is injective). Thus there exist open sets G_x and G_y in *Y* containing f(x) and f(y), respectively, and rare sets R_{G_x} and R_{G_y} with

$$G_{x} \cap cl(R_{G_{x}}) = \emptyset$$
 and $G_{y} \cap cl(R_{G_{y}}) = \emptyset$

such that $(G_x \cup R_{G_x}) \cap (G_y \cap R_{G_y}) = \emptyset$. Therefore

$$i_{\mu}[f^{-1}(G_x \cup R_{G_x})] \cap i_{\mu}[f^{-1}(G_y \cup R_{G_y})] = \emptyset.$$

By Theorem 3.5 we have

$$x \in f^{-1}(G_x) \subseteq i_{\mu}[f^{-1}(G_x \cup R_{G_x})] \text{ and } y \in f^{-1}(G_y) \subseteq i_{\mu}[f^{-1}(G_y \cup R_{G_y})].$$

Since $i_{\mu}[f^{-1}(G_x \cap R_{G_x})]$ and $i_{\mu}[f^{-1}(G_y \cap R_{G_y})]$ are two μ -open sets, (X, μ) is a μ - T_z space. \Box

4. Conclusion

Let μ be a GT on the topological space (X, τ) . Then the definitions of various types of rarely continuous functions $f: (X, \tau) \to (Y, \sigma)$ may be introduced from the definition of rarely μ -continuous function by replacing the generalized topologies μ on X suitably. In fact if μ is replaced by τ (resp. SO(X), PO(X), $\alpha O(X)$, $\delta O(X)$, $\delta SO(X)$, $\lambda O(X)$) then we can obtain almost all the results of [23] (resp. [24, 15, 16, 3, 4, 9]). We also observe that every rarely *s*-precontinuous function [11] is weakly *s*-precontinuous [11, 12] if f is *r*-preopen [11]. If $\mu = PO(X)$, then every rarely *s*-precontinuous and hence every weakly *s*-precontinuous function is rarely μ -precontinuous.

Also if we take $\mu = \lambda O(X)$ then almost weakly μ -continuity reduces to weakly λ -continuity of [10]. Thus every weakly λ -continuous function [10] is rare λ -continuous [9] and hence rare μ -continuous.

REFERENCES

- 1. F. G. ARENAS and J. DONTCHEV and M. GANSTER: On λ -sets and dual of generalized continuity. Questions and Answer in General Topology **15** (1997), 3–13.
- 2. M. CALDAS and S. JAFARI: On rarely g-continuous functions. Glasnik Mat 40(60) (2005), 317–322.
- 3. M. CALDAS and S. JAFARI: A strong form of rare continity. Soochow Jour. Math. 32(1) (2006), 161–169.
- 4. M. CALDAS and S. JAFARI and S. P. MOSHOKOA and T. NOIRI: On rarely δs continuous functions. Note Mat. 28(2) (2008), 107–115.
- Á. Császár: Generalized topology, generalized continuity. Acta Math. Hungar. 96 (2002), 351–357.
- Á. Császár: Generalized open sets in generalized topologies. Acta Math. Hungar. 106 (2005), 53–66.
- Á. Császáκ: δ- and θ-modifications of generalized topologies. Acta Math. Hungar. 120 (2008), 275–279.
- 8. E. EKICI: Generalized hyperconnectedness. Acta Math. Hungar. 133 (2011), 140-147.

- 9. E. EKICI and S. JAFARI: On a new weaker form of Popa's rare continuity via λ-open sets. Kuwait Journal of Science and Engineering **36(1A)** (2009), 33–41.
- 10. E. Ekici and S. JAFARI and M. CALDAS and T. NOIRI: Weakly λ -continuous functions. Novi Sad Jour. Math. **38(2)** (2008), 47–56.
- 11. E. EKICI and S. JAFARI: *On rare s-precontinuity for multifunctions*. Demonstratio Mathematica **46(2)**(2013), 395–403.
- 12. E. EKICI and J. H. PARK: *On weakly s-precontinuous multifunctions*. Arabian Jour. for Science and engineering **32(1A)** (2007), 83–92.
- S. JAFARI: A note on rarely contnuous functions. Univ. Bacau. Stud. Cerc. St. Ser. Mat., 5 (1995), 29–34.
- 14. S. JAFARI: On some properties of rarely continuous functions. Univ. Bacau. Stud. Cerc. St. Ser. Mat. 7 (1997), 65–73.
- 15. S. JAFARI: On rarely pre continuous functions. Far East J. Math. Sci. (FJMS) special volume, Part III (2000) 305–314.
- 16. S. JAFARI: *Rare α-coninuity*. Bull. Malays. Math. Sci. Soc. **28(2)** (2005), 157–161.
- 17. N. LEVINE: Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly 70 (1963), 36–41.
- 18. P. E. LONG and L. L. HERRINGTON: *Properties of rarely continuous functions*. Glasnik Mat. Ser. III, **17(37)** (1982), 147–153.
- 19. H. MAKI: *Generalized* λ *-sets and the associated closure operator.* The Special Issue in Commemoration of Prof. Kazusada Ikeda 's Retirement, 1986, 139–146.
- 20. A. S. MASHHOUR and M. E. ABD EL-MONSEF and S. N. EL-DEEB: On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt **53** (1982), 47–53.
- 21. O. NJÅSTAD: On some classes of nearly open sets. Pacific J. Math. 15 (1965), 961–970.
- 22. J. H. PARK and B. Y. LEE and M. J. SON: On δ-semiopen sets in topological space. J. Indian Acad. Math. **19** (1997), 59–67.
- V. POPA: Sur certain decomposition de la continuite dans les espaces topologiques. Glasnik Mat. Ser. III 14(34) (1979), 359–362.
- 24. V. POPA and T. NOIRI: Some properties of rarely quasi continuous functions. An. Univ. Timisoara. Ser. Stiint. Mat.29(1) (1991), 65–71.
- 25. B. ROY and R. SEN: On a type of decomposition of continuity. Afrika Math. (accepted and to appear).
- B. Roy and S. JAFARI: On covering properties via generalized open sets. Ann. Univ. Sci. Budapest Sec. Math. 55 (2012), 57–65.
- 27. M. STONE: Appliation of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 41 (1974), 374–381.
- 28. N. V. VELIČKO: H-closed topological spaces. Mat. Sb. 70 (1966), 98-112.

Bishwambhar Roy Department of Mathematics Women's Christian College 6, Greek Church Row Kolkata 700 026, INDIA bishwambhar_roy@yahoo.co.in

Ritu Sen Department of Mathematics S. A. Jaipuria College 10, Raja Naba Krishna Street Kolkata 700 005, INDIA

ritu_sen29@yahoo.co.in