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DIFFERENTIAL OPERATORS OVER MODULES AND RINGS AS A PATH
TO THE GENERALIZED DIFFERENTIAL GEOMETRY

Deepmala and Lakshmi N. Mishra

Abstract. The purpose of this paper is to give a short and understandable exposition on
differential operators over modules and rings. The described methods allow for the use
of algebra in differential geometry. Because this is a survey paper, the detailed proofs
are omitted. On the other hand, various references are given for the interested reader.
However, this paper should be understandable for quite a general audience, familiar
with higher mathematics. The stress is put on the main idea, not on the computational
details.
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1. Introduction

The purpose of this paper is to give a short and understandable exposition on
differential operators over modules and rings. The described methods allow for the
use of algebra in differential geometry. As a result, the basic concepts of differential
geometry can be expressed in the language of the commutative algebra.

It is a well–known result that infinitely differentiable manifold does not have
to be defined and considered in terms of maps, charts and atlases, as it is done in
the classical way. Instead, a suitable algebra can be studied. For example, if M is a
manifold, then the algebraic approach focuses on studying the algebra of infinitely
differentiable functions on M, i.e., C∞(M). Of course, a certain methodology must be
used such as, for example, inducing some topology, etc. For the classical approach,
the interested reader can consult, for example, the book of Lee [18]. Being interested
in physical motivations and examples, the classical position [1] is advised.

One of the interesting advantages of the algebraic approach is that if C∞(M)
algebra is considered, then the classical situation is described. However, the alge-
braic approach also works for more general spaces. Such spaces are, for example,
the configuration space of a bar mechanism, borders of the gluing of different ma-
terials, sharp edges, etc. Indeed, there are various methods that try to deal with
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”singular spaces”, i.e., ones which contain points, in which the structure of a man-
ifold breaks down. For example, the following [6, 9, 11, 19, 25, 26, 30, 31]. Some
reviews of different concepts can be found in [3, 4, 7]. The methods presented in
this paper are heavily based on books [21], [24] and [22]. Although we present the
known results, we try to present them in a quite self-consistent and short way, in
order to expose the idea of the generalization of differential geometry.

Because this is a survey paper, the detailed proofs are omitted. On the other
hand, the readers are strongly advised to consult the given references for more
thorough exposition. Yet, this paper should be understandable for quite a general
audience, familiar with higher mathematics. The stress is put on the main idea,
not on the computational details. For an introduction to commutative algebra the
reader can consult books [2, 20].

2. Basic algebra

For the reader’s convenience basic algebraic notions are introduced [2, 20, 24]. A
is called an algebra, if it is an additive, associative and commutative group with a
multiplication such that (a+ b) · c = a · c + b · c for every a, b, c, ∈ A. If it contains the
unit 1 ∈ A and 1 � 0, it is sometimes called a ring. A field is a commutative ring,
in which non-zero elements make a multiplicative group. An ideal I is a subgroup
of an additive group, such that if a ∈ A and b ∈ I, then ab ∈ I. A proper ideal is an
ideal I, such that I � A. Then, of course, 1 � I. A maximal ideal is an ideal, which
is not contained in any proper ideal. All invertible elements of A make the unique
maximal ideal in a commutative ring. A prime ideal is an ideal I such that if ab ∈ I,
then a ∈ I or b ∈ I. If I is a prime ideal, then A/I does not have a zero divisors (i.e.,
elements a, b such that ab = 0 and a � 0 and b � 0). Moreover, if I is prime and
maximal, then A/I is a field. P is called a left A–module, if P is an additive group
with a multiplication A× P→ P, such that (ab)p = a(bp) for every a, b ∈ A and p ∈ P
and 1p = p = p1 for every p ∈ P. A right A–module is defined per analogy. A module
over a field is called a vector space. An algebra which is a module over a ring K is
called a K–algebra.

Notice that every K–algebra A can be extended to the algebra A′ with a unit
1. A′ is a direct sum of K–modules K

⊕
A with a multiplication (λ1, a1)(λ2, a2) :=

(λ1λ2, λ1a2+λ2a1+a1a2) where λ1, λ2 ∈ K and a1, a2 ∈ A. Elements of A′ are denoted
by (λ, a) = λ1 + a, where λ ∈ K and a ∈ A. A direct sum of A–modules, P1

⊕
P2

is an additive group P1 × P2 with a module structure a(p1p2) = (ap1, ap2) where
p1 ∈ P1, p2 ∈ P2, a ∈ A. If {Pk}k∈K is a set of modules, then

⊕
Pk � (. . . , pk, . . . ) and

pk ∈∏Pk = P1 ×P2 × · · · ×Pk × . . . where pk � 0 for at most finite number of indices
k ∈ K.

A tensor product P
⊗

Q of A–modules is an additive group generated by el-
ements p ⊗ q where p ∈ P, q ∈ Q with relations (p + p′) ⊗ q = p ⊗ q + p′ ⊗ q,
p⊗ (q+q′) = p⊗q+p⊗q′, pa⊗q = p⊗aq for p ∈ P, q ∈ Q, a ∈ A and with an A–module
structure a(p ⊗ q) = (ap) ⊗ q = p ⊗ (qa) = (p ⊗ q)a.
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All A–linear morphisms from an A–module P to an A–module Q will be denoted
by HomA(P,Q). HomA(P,Q) is an A–module itself. An A–module P is called free,
if it has a basis, i.e., linear independent subset I ⊂ P spanning P such that every
element of P has a unique representation as a linear combination of elements from
I with a finite number of non–zero coefficients from the algebra A. For example,
every vector space.

P is called projective, if there exists a module Q such that P
⊗

Q is free. It is
known that every projective module over a ring with a unique maximal ideal is
free.

A composition of module morphisms P
i→ Q

j→ T is called exact in Q, if

ker j = im i. A composition of module morphisms 0 → P
i→ Q

j→ T → 0 is
called a short exact sequence, if it is exact in P,Q and T. Then, i is a monomorphism,

ker j = im i and j is an epimorphism and T = Q/P. It is known that, if 0→ P
i→ Q

j→
T → 0 is a short exact sequence and R is an A–module, then 0 → HomA(T,R)

j∗→
HomA(Q,R) i∗→ HomA(P,R) is exact in HomA(T,R) and in HomA(Q,R). Then, j∗ is
a monomorphism, but i∗ might not be an epimorphism.

A directed set I is a pair (I, <), where < is a relation such that

1. i < i ∀i ∈ I,

2. i < j, j < k⇒ i < k,

3. ∀i, j ∈ I ∃k ∈ I such that i < k and j < k.

It can happen that i � j and i < j and j < i simultaneously.

A direct system is a family of modules over the given algebra, {Pi}i∈I, where I is
a directed set, such that for every i, j ∈ I, i < j there exists a morphism ri

j : Pi → Pj

such that

1. ri
i = idPi ,

2. rj
k ◦ ri

j = ri
k for i < j < k.

A direct limit is understood as (P∞, ri∞) where ri∞ : Pi → P∞ and ri∞ = rj
∞ ◦ ri

j

for all i < j. P∞ consists of elements from
⊕

I Pi modulo the relation identifying
elements from Pi with their images in Pj for every i < j. For example, the direct

sequence P0 → P1 → · · · → Pi
ri
i+1→ . . . , where I =N.

It is known that, if {Pi} and {Pi} are direct systems over the same algebra and
are indexed by the same I and P∞ and Q∞ are their direct limits respectively, then
direct limits of direct systems {Pi

⊕
Qi} and {Pi

⊗
Qi} are P∞

⊕
Q∞ and P∞

⊗
Q∞

respectively.
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A projective limit is defined per analogy to a direct limit. In other words, it is
understood as (P∞, π∞i ) where P∞ is a module and π∞i are morphisms such that

π∞i : P∞ → Pi and π∞i = π
j
i ◦ π∞j for all i < j. They are elements from

∏
Pi, i.e.,

(. . . , pi, . . . ) such that pi ∈ Pi and pi = π j
i (p

j) for every i < j. For example, if {Pi} is a
direct sequence of modules and Q is a module, then {Hom(Pi,Q)}make a projective
system, whose projective limit is isomorphic to Hom(P∞,Q).

3. Differential operators

Let K be a field. Let A be a K–algebra. Let P and Q be A–modules. Let
HomK(P,Q) := {h : P → Q | h − homomorphism}. It is a K–module and it can
be equipped with an A–module structure. It can be done with a help of the left
multiplication, i.e., defining (ah)(p) := ah(p); or with a help of the right multiplication,
i.e., defining (a+h)(p) := h(ap), where a ∈ A and p ∈ P.

Further, the following notation will be used. Let δah := a+h− ah, where a ∈ A. In
other words, δa : HomK(P,Q)→ HomK(P,Q). Of course, then δa(h)(p) = (a+h)(p) −
(ah)(p) = h(ap) − ah(p), where p ∈ P.

Definition 3.1. The element Δ ∈ HomK(P,Q) is called a differential operator of order
s on P with values in Q, if (δa0 ◦ · · · ◦ δas )(Δ) = 0 for an arbitrary a0, . . . , as ∈ A.
The collection of all differential operators of order s on P with values in Q will be
denoted by Diffs(P,Q).

The following lemma can be easily proved.

Lemma 3.1. The following conditions hold:

1. Diffs(P,Q) inherits the structure of both left and right multiplications.

2. Diffs(P,Q) ⊂ Diffs+1(P,Q).

3. Diff0(P,Q) = HomA(P,Q).

4. δab = aδb + bδa and δa ◦ δb = δb ◦ δa for Δ ∈ Diff1(P,Q).

Proof. Of the 1: Let Δ ∈ Diffs(P,Q), then (aΔ)(p) := aΔ(p). Also, δb(aΔ)(p) =
(aΔ)(bp) − b(aΔ)(p) = aΔ(bp) − b(aΔ)(p) = a(Δ(bp) − bΔ(p)) = a(δbΔ)(p). As a result,
aΔ ∈ Diffs(P,Q). Similarly, δb(a+Δ)(p) = (a+Δ)(bp) − b(a+Δ)(p) = Δ(abp) − bΔ(ap) =
(a+(δbΔ))p.

Of the 2: Trivial.
Of the 3: Δ ∈ Diff0(P,Q) ⇒ (δa(Δ))(p) = 0 ⇒ Δ(ap) − aΔ(p) = 0 ⇒ Δ(ap) =

aΔ(p)⇒ Δ ∈ HomA(P,Q).
Of the 4: Δ ∈ Diff1(P,Q)⇒ [(δa ◦ δb)(Δ)](p) = 0. But

(3.1) [(δa ◦ δb)(Δ)](p) = Δ(abp) − bΔ(ap) − aΔ(bp) + abΔ(p) .
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Consider the A–modules morphism hs : Diffs(A,Q)→ Q, such that hs(Δ) = Δ(1).
Then the below diagram commutes.

Diffs(A,Q)

P Q

hsfΔ

Δ

Above, fΔ : P → Diffs(A,Q) is a homomorphism, such that ( fΔP)(a) = Δ(ap),
where a ∈ A. Diffs(A,Q) should be understood as a module with the right multipli-
cation. The mappingΔ �→ fΔ is an isomorphism, i.e., Diffs(P,Q) = HomA(P,Diffs(A,Q)).
In Diffs(A,Q) there are both, right and left, multiplications.

Let P = A, Δ ∈ Diff0(A,Q). Then, Δ is uniquely determined by the element Δ(1).
Then, there exists an isomorphism Diff0(A,Q) = Q, determined by Q � q �→ Δq ∈
Diff0(A,Q), where Δq is such that Δq(1) = q.

Let Δ ∈ Diff1(A,Q). As a result of Eq. (3.1) it holds that

(3.2) Δ(ab) = bΔ(a) + aΔ(b) − abΔ(1) ,

where a, b ∈ A. (It has been substituted in Eq. (3.1) that p = 1.)

Definition 3.2. If Δ(1) = 0, then the Leibniz rule holds and Δ is called a derivation.

Notice that an arbitrary 1–st order differential operator can be decomposed into
the following sumΔ(a) = aΔ(1)+ (Δ(a)−aΔ(1)), where the first summand belongs to
Diff0(A,Q) and the second is a derivation. Of course, the collection of derivations
over A are an A–module. It is because if ∂ is a derivation, then a∂ is also a derivation.
The collection of all derivations over A with values in Q will be denoted by∂(A,Q).

Lemma 3.2. Diff1(A,Q) = Q
⊕

∂(A,Q).

Lemma 3.3. If Q = A, then ∂A is the Lie algebra overK, i.e., [u, u
′
] = u ◦ u

′ − u
′ ◦ u for

arbitrary u, u
′ ∈ ∂A.

Definition 3.3. Diffs(A) := Diffs(A,A).

Lemma 3.4. Diff1(A) = A
⊕

∂A.

Lemma 3.5. Let Δ ∈ Diffs(P,Q) and let ∇ ∈ Diffr(Q,R). Then, it holds that

1. ∇ ◦ Δ ∈ Diffs+r(P,R).

2. δa(∇ ◦ Δ) = δa(∇) ◦ Δ + ∇ ◦ δa(Δ).
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For proofs of the above lemmas, see, for example, [24].

Definition 3.4. Diff(P,P) :=
⊕

i=1,2,3,...Diffi(P,P).

Diff(P,P) should be understood as a direct limit in the following sense EndAP ⊂
Diff1(P,P) ⊂ Diff2(P,P) ⊂ · · · ⊂ Diff(P,P). Diff(P,P) is a K–algebra, but not an
A–algebra. It is also non–commutative.

Lemma 3.6. If Δ ∈ Diffl(P,Q), then (δa1 ◦ . . . δak )(Δ) ∈ Diffl−k(P,Q).

For the proof of the above lemma, see, for example, [24].
Moreover, the generalized Leibniz rule holds, i.e., (δa ◦δb)(Δ) = δa(Δ)◦ b+ a◦δb(Δ).
Now, simple examples (see, [21]) of the above theory will be given. Suppose

thatK = R and A = C∞(M), where M is an infinitely differentiable manifold. Then,
∂(A,R) are just tangent vectors in a point x ∈M. Indeed, if μx := { f ∈ C∞(M) | f (x) =
0}, then C∞(M)/μx = R.

∂(A,A) are just tangent vector fields over M. ∂(A,A/μN) are tangent vector
fields over a submanifold N ⊂M. μN := { f ∈ C∞(M) | f (x)|N = 0}.

Finally, if Δ ∈ Diffs(C∞(M)) and (x1......xn) is a local coordinate chart on U ⊂ M,
then Δ|U = ∑s

|σ|=0 ασ
∂|σ|
∂xσ

, where ασ = ασ(x1...., xn), σ = (σ1, . . . , σn), |σ| = σ1 + · · · + σn

and ∂xσ = ∂x
σ1
1 , . . . , ∂x

σn
n .

The algebraic definition of the differential operator (Definition 3.1) comes from
Grothendieck [10]. The linkage of algebra and geometry in the above spirit is also
present in the celebrated work of Swan [27]. The generalized derivations and their
implications are discussed, for example, in [12, 24, 8].

4. Representations

Now, consider the tensor product A
⊗
K

P. Let δb(a⊗ p) := (ba)⊗ p− a⊗ (bp), where
p ∈ P and a, b ∈ A. By μk+1 will be denoted a submodule of A

⊗
K

P generated by
elements δb0 ◦ · · · ◦ δbk (a ⊗ p).

Definition 4.1. Jk(P) := (A
⊗
K

P)/μk+1 will be called a module of k–jets.

Elements of Jk(P) will be denoted by c⊗k p. In particular, the module of 1–jets, J1(P),
consists of elements c⊗1 p modulo the relation (δa ◦ δb)(1⊗1 p) = ab⊗1 p− a⊗1 (bp)−
b ⊗1 (ap) + 1 ⊗1 (abp) = 0.

Jk(P) is aK–module. However, it can be equipped with an A–module structure
(with left and right multiplications), in the following way

b(a ⊗k p) := ba ⊗k p ,

b+(a ⊗k p) := a ⊗k (bp) .
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There exists a morphism of modules Jk : P → Jk(p), where Jk(p) = 1 ⊗k p.
Notice, that P is an A–module and Jk(p) is a right A–module. Now, Jk(P) as a left
A–module is generated by elements Jk(p), where p ∈ P.

If r > s, then there exists the canonical monomorphism μr → μs. Therefore,
there exists an epimorphism πi+1

i : Ji+1(P) → Ji(P). In particular, π1
0 : J1(P) → P,

where π1
0(a ⊗1 p) = ap.

Lemma 4.1. Let Δ ∈ Diffk(P,Q). Then, the below diagram commutes. fΔ is a homomor-
phism.

Jk(P)

P Q

fΔJ k

Δ

Proof. The sketch of the proof is the following. Let Jk(p) ∈ Diffk(P, Jk(p)).
For an arbitrary f ∈ HomA(A

⊗
P,Q) it holds that δb( f ◦ J)(p) = f (δb(1 ⊗ p)),

where J : P → A
⊗

P and J(p) = 1 ⊗ p. As a result, Diffk(P,Q) is isomorphic to
HomA(Jk(P),Q). The isomorphism is given by the mapping Δ �→ fΔ.

The immediate consequence is that in the language of the category theory Jk(P)
is a representation of the functor Diffk(P, ·). This was noticed and interpreted by
Vinogradov [29]. Further, on this basis a general, conceptual theory of partial
differential equations was build (see, for example, [15, 17, 5]).

5. Differential operators – cont.

Let κn := (1, 2, ...., n) and let κ := (i1, . . . , il), where l ≤ n. Let κ denote the comple-
ment of κ in κn. Let |κ| := l and let aκ := ai1 . . . ail . Let δaκ := δai1

◦ δai2
◦ · · · ◦ δail

.
It can be checked (see [21]) that

1. δaκn (Δ ◦ ∇) =
∑
|κ|≤n δaκ(Δ) ◦ δaκ(∇) ,

2. δaκn (Δ)(b) =
∑
|κ|≤n(−1)|κ|aκΔ(aκb) ,

3. Δ(aκnb) = −∑0<|κ|≤n(−1)|κ|aκΔ(aκb) .

Lemma 5.1. If Δ ∈ DifflA and ∇ ∈ DiffkA, then

(5.1) [Δ,∇] = Δ ◦ ∇ − ∇ ◦ Δ ∈ Diffk+l−1A .

Proof. The idea of the proof is based on the induction over l + k.
Suppose that l + k = 0. Then, l = 0 and k = 0, i.e., Δ ∈ Diff0A = A and

∇ ∈ Diff0A = A. In other words, [Δ,∇] = ab − ba = 0.
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Suppose that Eq. (5.1) holds for l + k < n. Then, δa(Δ ◦ ∇ − ∇ ◦ Δ) = δa(Δ) ◦ ∇ +
Δ◦δa(∇)− δa(∇)◦Δ−∇◦δa(Δ) = [δa(Δ),∇]+ [Δ, δa(∇)]. Of course, δa(Δ) is of l− 1–th
order, ∇ is of k–th order, Δ is of l–th order and δa(∇) is of k − 1–th order. From the
inductive step [Δ, δa(∇)] is of the order ≤ k + l − 2. Therefore, [Δ,∇] is of the order
≤ l + k − 1. The proof finishes by induction.

Definition 5.1. Sk(A) := DiffkA/Diffk−1A. Elements of Sk(A) will be denoted by
smblkΔ and called symbols. Of course, Δ ∈ DiffkA. S∗(A) :=

⊕∞
i=0 Si(A) will be

called the algebra of symbols. The multiplication is defined in the following way
smbllΔ ∗ smblkΔ := smblk+l(Δ ◦ ∇).

Lemma 5.2. The above definition does not depend on representing the object from Sk.

Proof. If smbllΔ = smbllΔ
′
, then Δ −Δ′ ∈ Diffl−1A and, therefore, (Δ −Δ′) ◦ ∇ ∈

Diffl+k−1A.

Lemma 5.3. The algebra of symbols is commutative.

Proof. It is a consequence of Eq. (5.1).

Lemma 5.4. The algebra of symbols is a Lie algebra. {smbllΔ, smblk∇} := smblk+l−1[Δ,∇].

Lemma 5.5. S1(A) is isomorphic to ∂(A). The isomorphism is given by the mapping
smbl1Δ �→ Δ − Δ(1).

For proofs of the above lemmas, see, for example, [21].
The above objects allow for reformulation in an algebraic way a cotangent space

(see [13]).
Let Spec

K
A be the collection of allK–homomorphisms from A toK.

Definition 5.2. If h ∈ Spec
K

A, then T∗hA := h/h2 will be called a cotangent space and
T∗A :=

⋃
h∈Spec

K
A T∗hA will be called a cotangent bundle.

Notice that in a classical case a cotangent space and a cotangent bundle can be
defined in the below way.

Definition 5.3. Let M be an infinitely differentiable manifold.
T∗xM := HomR(TxM,R) and T∗M :=

⋃
x∈M T∗xM.

Notice that T∗xM is isomorphic to μx/μ2
x.

Lemma 5.6. It holds (see [13]) that

1. T∗M is isomorphic to Spec
R

S∗(C∞(M)),

2. T∗A is isomorphic to Spec
K

S∗(A).

Elements h ∈ Spec
K

A are in a sense generalization of the notion of a point (for
physical and conceptual interpretations see, for example, [21], [23] and [8]).
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6. Jets

Let P = A. Then, Jk(A) is a commutative algebra. The multiplication (see [13]) is
given by the following relations

aJk(b) ∗ cJk(d) = acJk(bd) ,

1J k(A) = Jk(1A) .

Epimorphisms πi+1
i constitute the sequence P = J0(P)

π1
0← J1(P) ← · · · ← Jk(P)

πk+1
k←

Jk+1(P) ← . . . . This sequence is dual to the following imbeddings HomA(P,Q) =
Diff0(P,Q)→ Diff1(P,Q)→ · · · → Diffk(P,Q)→ Diffk+1(P,Q)→ . . . .

As a result, it can be defined J∞(P) := lim←−− Jk(P), π∞i := J∞(P) → Ji(P) and
J∞ := lim←−−Jk, where J∞ : P→ J∞(P).

J∞(P) is a commutative algebra. The unit element is the following 1J∞(P) =
(1P,J1(1P),J2(1P), . . . ).

Lemma 6.1. kerπi
i−1 = 〈

∑
α aα(δaκJk)(1)〉 = μi−1/μi. In other words, elements

∑
α aα(δaκJk)(1)

generate kerπi
i−1.

For the proof of the above lemma, see, for example, [24].

Definition 6.1. Ck(P) := kerk
k−1 and C∗(P) :=

⊕∞
i=0 Ci(P). C∗(P) will be called the

algebra of cosymbols.

Lemma 6.2. If P = A, then C∗(P) is both aK–algebra and an A–algebra. The multiplica-
tion is given by the following relations

θk � θi :=
∑

γ

(δaκ1 aκ2Jk+l)(1) ∈ kerπk+l
k+l−1 ,

where
θk =

∑

α

(δaκ1Jk)(1) ∈ kerπk
k−1 ,

θl =
∑

β

(δaκ2J l)(1) ∈ kerπl
l−1 .

The proof of the above lemma is computational (see [21, 13]).

Definition 6.2. A tangent vector v in h ∈ Spec
K

(A) is understood as a K–linear
mapping v : A→ K, for which the Leibniz rule holds, i.e., v(ab) = h(a)v(b)+ v(a)h(b)
for arbitrary a, b ∈ A. The collection of all tangent vectors in h will be denoted by
ThA and called a tangent space. Let TA :=

⋃
h∈Spec

K
A ThA. It will be called a tangent

bundle.
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Notice that TA is a K–module. Of course, if M is a manifold and A = C∞(M),
then the classical tangent space and the tangent bundle are obtained.

Lemma 6.3. The following isomorphisms holds (see [21, 24, 13]):

1. SpecAC∗(A) = ∂(A),

2. SpecAC∗(A) = HomA(C1(A),A),

3. TA = Spec
K

C∗(A),

4. HomA(Ci(A),A) = DiffiA/Diffi−1A,

5. HomA(C1(A),P) = ∂(A,P).

7. Conclusions

The concept of a differential operator over arbitrary algebra was presented along
with its consequences. For example, the generalized concept of a jet was described.
Besides various properties of described objects, tangent and cotangent bundles
were defined in the language of algebra. It was explained that the tangent bundle
TA is isomorphic to Spec

K
C∗(A) and that the cotangent bundle T∗A is isomorphic

to Spec
K

S∗(A).
In addition to the already cited references, the interested reader should consult

the short and concise expository article of Krasil’shchik [14]. Some extension of
the discussed material is given, for example, in [28]. Finally, linear differential
operators over commutative algebras are thoroughly discussed in the book [16], on
which this paper also greatly relies on. This book is much more detailed and also
contains a collection of exercises.
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