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ON SUITABILITY OF NEGATIVE BINOMIAL MARGINALS AND
GEOMETRIC COUNTING SEQUENCE IN SOME APPLICATIONS OF

COMBINED INAR(p) MODEL ∗

Aleksandar S. Nastić

Abstract. A combined negative binomial integer-valued autoregressive process of order
p is defined. Correlation structure and regression properties are presented. Model
parameters are estimated using conditional least squares and Yule-Walker methods and
the asymptotic distributions of the obtained estimators are derived. Model interpretation
is provided, especially focusing on usage of geometric counting sequence and negative
binomial marginals and further it is justified by application of the introduced model
to certain counting data, where it is compared with some other possible known model
solutions.

1. Introduction

In recent years there has been an exponential growth of interest and research as
well, in the area of the discrete valued time series modeling. It has all begun by Cox
and Miller [8] using Markov chains. Later, some significant results were obtained
by Jacobs and Lewis [9, 10, 11], designing the discrete ARMA models. Finally, real
foundation of a contemporary discrete valued time series analysis was made by
defining the integer-valued autoregressive (INAR) models, which were introduced,
independently of each other by McKenzie [13] and Al-Osh and Alzaid [2]. They
used a binomial thinning operator based on the Bernoulli counting series in order to
define the dependance among the random variables of non-negative integer-valued
time series. Mainly defined by Poisson or geometric marginal distribution, these
models were highly adequate for modeling counting data concerning the number
of random events or some population elements which could enter into or either
survive or disappear from the observed system during counting time intervals.
However, responding over time to more demanding modeling requirements, there
have been many modifications and generalizations of the introduced INAR models.
Some of them were in respect of marginal distribution and they can be found in
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[14], [1], [5] and [6]. Other authors have focused their attention on the thinning
operator, such as [3], [12] and [22, 23]. Also, the main contribution in [17] was
an introduction of the new integer-valued autoregressive process based on the
negative binomial thinning operator.

Here we construct the INAR process in order to model a certain kind of crime
data in the best possible way. Our interest is focused on the counting of committing
light criminal activities periodically in time. In this case the observed population
elements may interact among themselves, producing in this way newly generated
counting objects, which probability of occurrence decay over time. Therefore,
geometric distribution seems to be a promising choice for the random variables
of counting sequence. Further, we noted that these kind of time series contain
only few zeroes and smaller non negative integers as well, on the other hand
they are mostly made of slightly larger two-digit integers. Based on the intuitive
and empirical distribution interpretation, this has made us to consider negative
binomial marginals. Besides a few new process characterizations, this is the main
step forward in relation to the combined geometric INAR(p) model introduced in
[15], where geometric marginal distribution was taken into account.

The outline of the paper is as follows. In the next section we introduce the com-
bined negative binomial integer-valued autoregressive process of the order p and
we present its main features, including conditional stochastic properties. In Section
3, Yule-Walker and conditional least squares methods are used for model parameter
estimation. Also, we discuss asymptotic behavior and distributional properties of
the corresponding statistics. In the last section we elaborate the main contribution
of the paper. Namely, we give a detailed model interpretation, reflecting its key
features, especially the choice of marginal distribution and counting sequence, on
the data characteristics. Also, the compatibility of the introduced model with the
observed counting series is confirmed by its comparison with some other possible
INAR model solutions.

2. Construction of the model

In this section we introduce a combined integer-valued autoregressive process with
negative binomial marginal distribution based on the negative binomial thinning
operator ”∗n”, defined in [15] as,

α ∗n X =
X∑

i=1

W(n)
i ,

where
{
W(n)

i

}
is a sequence of independent random variables, independent of a

non-negative integer-valued random variable X, geometrically distributed with
parameter α/(1 + α), α ∈ [0, 1], i.e. with probability mass function (pmf) given as
P
(
W(n)

i = x
)
= αx/(1+α)x+1, x = 0, 1, . . .. Index n is used as a time notation, meaning

that the thinning ”∗n” is realized at time point n.
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Definition 2.1. A time series {Xn}, which is given by

Xn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α ∗n Xn−1 + εn, with probability φ1,
α ∗n Xn−2 + εn, with probability φ2,
...
α ∗n Xn−p + εn, with probability φp,

(2.1)

where α ∈ (0, 1), 0 � φ1, φ2, . . . , φp � 1, φ1 + φ2 + . . . + φp = 1, p � 1, and
Xn : NB

(
θ,

q
1+q

)
has a negative binomial probability mass function P(Xn = x) =(θ−1+x

θ−1

) qx

(1+q)x+θ , θ > 0, q > 0 is called a combined negative binomial integer-valued
autoregressive process of order p (CNBINAR(p)), if the following conditions are
satisfied:

(i) {εn} is an i.i.d. sequence of random variables, where εn is independent of Xm,
for any m < n,

(ii) counting sequences
{
W(m)

i

}
are mutually independent, and not correlated to

εn, for any m and n,

(iii) conditioned on Xn, random variables α ∗n+1 Xn, . . ., α ∗n+p Xn are independent,

(iv) random variables α ∗n+1 Xn, α ∗n+2 Xn,. . ., α ∗n+p Xn do not depend on Hn−1,
which represent the process history generated by all random variables Xm,
α ∗m+ j Xm, m < n, j ∈ {1, 2, . . . , p}.

Remark 2.1. If p = 1, then the process {Xn} introduced in Definition 2.1 is reduced to the
NBINAR(1) defined in [18].

In order to discuss the distributional properties of the innovation sequence {εn},
we focus on its probability generating function (pgf). Since,

ΦXn (s) =
p∑

i=1

φiΦα∗Xn−i+εn(s) = ΦX(ΦW(s))Φε(s),

then this problem is reduced to the case of p = 1. Thus, as in [18], it is resolved
obtaining that the pgf of εn is

Φε(s) =
( 1
1 + α − αs

)θ(1 + α(1 + q) − α(1 + q)s
1 + q − qs

)θ
.

Using this, it follows that εn = Yn + Zn, where Yn is NB
(
θ, α1+α

)
distributed and

Zn =
N∑

i=1

(
α(1+q)

q

)Ri ◦ Vi, where N
d
= P

(
−θ log α(1+q)

q

)
, Ri

d
= U(0, 1), Vi

d
= Geom

(
q

1+q

)
, ◦
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is binomial thinning and N, Ri, Vi are independent random variables. Therefore,
the pmf of εn is obtained as

P(εn = 0) =
( 1
1 + α

)θ (1 + α(1 + q)
1 + q

)θ
,(2.2)

P(εn = l) =
θ
l

l−1∑
j=0

P(εn = j)
{(
α

1 + α

)l− j

−
(
α(1 + q)

1 + α(1 + q)

)l− j

+

(
q

1 + q

)l− j
⎫⎪⎪⎬⎪⎪⎭ ,

where l ∈ {1, 2, . . .}. Also, the mean and the variance of εn are με = θq(1 − α) and
σ2
ε = θq(1 + α)((1 + q)(1 − α) − α), respectively.

2.1. Model properties

Here, we present some characteristic features of the introduced model. The pro-
perties which are the same as those given in case of CGINAR(p) in [15] will just
be stated without any derivation, while the others, which are newly introduced or
dependent of marginal distribution, will be presented in much more detail.

The autocorrelation function satisfies the following equation

ρ(k) = α
p∑

j=1

φ jρ(|k − j|),(2.3)

where ρ(k) is decreasing exponentially to zero as k tends to infinity. Also, the
CNBINAR(p) is a pth order Markov process, which is strictly stationary and ergodic.
Therefore, in order to have the joint probability function it is enough to derive the
transition probabilities. Let I = { j|xn− j = 0, j = 1, . . . , p}, then

P(Xn = xn|Hn−1) =
∑
j�I

φ jP

⎛⎜⎜⎜⎜⎜⎜⎝
Xn− j∑
i=1

Wi + εn = xn|Hn−1

⎞⎟⎟⎟⎟⎟⎟⎠ +
∑
j∈I
φ jP (εn = xn)

=
∑
j�I

φ jP

⎛⎜⎜⎜⎜⎜⎝
xn− j∑
i=1

Wi + εn = xn

⎞⎟⎟⎟⎟⎟⎠ +
∑
j∈I
φ jP (εn = xn) ,

where

P

⎛⎜⎜⎜⎜⎜⎝
xn− j∑
i=1

Wi + εn = xn

⎞⎟⎟⎟⎟⎟⎠ =

xn∑
k=0

(
xn− j − 1 + xn − k

xn− j − 1

)
αxn−k

(1 + α)xn−k+xn− j
P(εn = k)

and probabilities of the innovations εn are given by (2.2).
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Now, let investigate the time reversibility of the process. Since, it is a Markov
process of order p, we ought to check whether its joint probability generating
function ΦXn,Xn−1,...,Xn−p(s1, s2, . . . , sp+1) is symmetric in s1, s2, . . . , sp+1. This pgf is as
follows

E
(
sXn
1 sXn−1

2 . . . sXn−p

p+1

)
=

p∑
i=1

φiE
(
sα∗Xn−i+εn
1 sXn−1

2 . . . sXn−p

p+1

)

Hence,

ΦXn,...,Xn−p(s1, . . . , sp+1) = Φεn(s1)
p∑

i=1

φiE
(
sα∗Xn−i
1 sXn−1

2 . . . s
Xn−p

p+1

)
,(2.4)

where, using notation p(xn−1, . . . , xn−p) for P(Xn−1 = xn−1, . . . ,Xn−p = xn−p), we have
that

E
(
sα∗Xn−1
1 sXn−1

2 . . . s
Xn−p

p+1

)
=

=

∞∑
xn−1=0

. . .
∞∑

xn−p=0

E
(
s
∑xn−1

i=1 Wi

1 sxn−1
2 . . . s

xn−p

p+1

)
p(xn−1, . . . , xn−p)

=

∞∑
xn−1=0

. . .
∞∑

xn−p=0

(ΦW(s1)s2)xn−1 sxn−2
3 . . . s

xn−p

p+1 p(xn−1, . . . , xn−p)

= ΦXn−1,Xn−2,...,Xn−p

(
ΦW(s1)s2, s3, . . . , sp+1

)
,

which is a part of the first term in (2.4). Also, all other terms in (2.4) are similarly
calculated, providing the joint pgf in the following form.

ΦXn,Xn−1,...,Xn−p(s1, s2, . . . , sp+1) =

= Φεn(s1)
[
φ1ΦXn−1,Xn−2,...,Xn−p(ΦW(s1)s2, s3, . . . , sp+1)+

+ φ2ΦXn−1,Xn−2,...,Xn−p(s2,ΦW(s1)s3, . . . , sp+1)

+ . . . + φpΦXn−1,Xn−2,...,Xn−p(s2, s3, . . .ΦW(s1)sp+1)
]

Now, when it can be confirmed that

ΦXn,Xn−1,...,Xn−p(s1, s2, . . . , sp+1) � ΦXn ,Xn−1,...,Xn−p(s2, s1, . . . , sp+1),

we conclude that the process is not time reversible.
Finally, we focus our attention on the model conditional properties. Using

process definition (2.1) and some of pgf properties we obtain the process probability
generating function.

ΦXn+1 |Hn (s) = Φε(s)
p∑

i=1

φiΦW(s)Xn−i+1

ΦXn+k |Hn (s) = Φε(s)

⎛⎜⎜⎜⎜⎜⎝
k−1∑
i=1

φiΦXn+k−i |Hn (ΦW(s))
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+

p∑
i=k

φiΦW(s)Xn+k−i

⎞⎟⎟⎟⎟⎟⎠ , 2 � k � p,(2.5)

ΦXn+k |Hn (s) = Φε(s)
p∑

i=1

φiΦXn+k−i |Hn (ΦW(s)), k � p + 1.

Then, using the equalityΦ
′
Xn+k |Hn

(1) = E(Xn+k|Hn), it directly follows that the process
regression properties can be obtained from the following equations.

E(Xn+1|Hn) = α

p∑
i=1

φiXn+1−i + με

E(Xn+k|Hn ) = α

⎛⎜⎜⎜⎜⎜⎝
k−1∑
i=1

φiE(Xn+k−i|Hn)

+

p∑
i=k

φiXn+k−i

⎞⎟⎟⎟⎟⎟⎠ + με, 2 � k � p,(2.6)

E(Xn+k|Hn ) = α

p∑
i=1

φiE(Xn+k−i|Hn) + με, k � p + 1.

If we denoted the corresponding sum in the right part of (2.6) with S(m), for mp+1 �
k � (m + 1)p, then by simple recursive derivation we could obtain the following

E(Xn+k|Hn) = αm+1
p∑

i=1

φiS(m) + με
(
1 + α + α2 + . . . + αm

)

= α(m+1)S(m+1) + με
1 − αm+1

1 − α .
Therefore,

lim
k→∞

E(Xn+k|Hn) =
με

1 − α = θq = E(Xn).

On the other hand, by the same approach and using the fact that the second order
moment equals Φ

′′
X + Φ

′
X, k-step ahead conditional variance is derived as

Var(Xn+k|Hn) = α2
p∑

i=1

φiVar(Xn+k−i) −
⎛⎜⎜⎜⎜⎜⎝α

p∑
i=1

φiE(Xn+k−i|Hn)

⎞⎟⎟⎟⎟⎟⎠
2

+ (α + 2α2)
p∑

i=1

φiE(Xn+k−i|Hn) + σ2
ε.

Easily, we show that

lim
k→∞

Var(Xn+k|Hn) = θq(q − α2q − 2α2 − α + 1)

+ (α + α2)E(Xn) + α2E(X2
n) − α2(E(Xn))2

= θq(q + 1) = Var(Xn).(2.7)
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Since in the case of standard INAR processes the conditional variance is a linear
function of Xn, it is interesting to notice that our process conditional variance
quadratically depends on its history values, where this impact is realized through
α2 value. Based on (2.7), it means that especially strongly correlated overdispersed
data series might be a good candidate for modeling by here introduced model.

3. Parameter estimation

Here, in order to estimate the unknown model parameters α, φ1, φ2, . . . , φp, q and
θ, we present some non-parametric procedures. The obtained statistics are based
on the finite process random sample X1,X2, . . . ,Xn and are derived using approach
of Yule-Walker and the conditional least squares method.

3.1. Method of moments

Using the results of [15], we already have the following strongly consistent esti-
mates with asymptotical normal distribution.

μ̂
yw
X =

1
N

N∑
i=1

Xn, α̂
yw =

p∑
i=1

Di

D
, φ̂

yw
j =

Dj

p∑
i=1

Di

, j = 1, 2, . . . , p,

where μX = E(Xn) = qθ and D1,D2, . . . ,Dp and D are the Crammer’s Rule determi-
nants, used in solving the linear system, defined by (2.3).

Further, using that Var(Xn) = σ2
X = qθ(1 + q) = μX(1 + q), we have that

q̂yw =
σ̂2

yw
X

μ̂yw
X

− 1 =
∑N

i=1(Xi − XN)2 −∑N
i=1 Xi∑N

i=1 Xi
,(3.1)

which is, based on the process ergodic property, a strongly consistent estimator.
Now, using the Theorem 1 of [20], it follows that [μ̂yw

X , σ̂
2yw

X ]T is an asymptotically
normally distributed, strongly consistent estimator of [qθ, qθ(1 + q)]T, where after
applying Proposition 6.4.3, from [7], it is obtained that q̂yw has an asymptotic normal
distribution.

Finally, based on preceding derivation, pameter θ is estimated via strongly
consistent statistics

θ̂yw =
μ̂

yw
X

q̂yw =

(∑N
i=1 Xi

)2
∑N

i=1(Xi − XN)2 −∑N
i=1 Xi

.(3.2)

Since μ̂yw
X has an asymptotic normal distribution and q̂yw w.p.1−→ q, then using Slutsky

theorem, asymptotic normality of θ̂yw directly follows, furthermore with distribu-
tion parameters equal to asymptotical mean and variance of μ̂yw, given in [15] and
divided by q and q2, respectively.
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3.2. Modified conditional least squares method

As the previous one, this method will partially be based on the corresponding
conditional least squares estimating procedures used for the model presented in
[15]. Namely, we minimize the sum of squares

N∑
n=p+1

⎛⎜⎜⎜⎜⎜⎝Xn − αφ1Xn−1 − . . . − αφpXn−p −
⎛⎜⎜⎜⎜⎜⎝1 −

p∑
i=1

αi

⎞⎟⎟⎟⎟⎟⎠μX

⎞⎟⎟⎟⎟⎟⎠
2

,

by equating to zero the corresponding partial derivatives in respect to unknown
parameters and solving the obtained problem, we have

μ̂cls
X =

D∗(
D∗ −

p∑
i=1

D∗i

) (
N − p

)
⎛⎜⎜⎜⎜⎜⎜⎝

N∑
n=p+1

Xn − 1
D∗

p∑
j=1

D∗j
N∑

n=p+1

Xn− j

⎞⎟⎟⎟⎟⎟⎟⎠ ,

α̂cls =

p∑
i=1

D∗i

D∗
and φ̂cls

j =
D∗j

p∑
i=1

D∗i

, j = 1, 2, . . . , p,

where D∗ and D∗i , i = 1, 2, . . . , p, are the determinants of Cramer’s rule applied to
the corresponding linear system. All these estimators are strongly consistent and
asymptotically normally distributed.

We still need to estimate parameters q and θ. Using σ2
X = qθ(1 + q) and the

dispersion Yule-Walker estimator we obtain the modified conditional least squares
estimator via

q̂mcls =
σ̂2

yw
X

μ̂cls
X

− 1,(3.3)

which is obviously a strongly consistent estimator. Now, since from [15] it follows
that N

1
2

(
μ̂cls

X − μ̂yw
X

)
= o(1), for N→∞, we have that as N→ ∞

N
1
2

(
q̂yw − q̂mcls

)
= N

1
2

⎛⎜⎜⎜⎜⎝ σ̂2yw
X

μ̂
yw
X

− σ̂
2yw

X

μ̂cls
X

⎞⎟⎟⎟⎟⎠ = σ̂
2

yw
x N

1
2

(
μ̂cls

X − μ̂yw
X

)
μ̂cls

X μ̂
yw
X

= o(1).

This is a sufficient condition for applying Proposition 6.3.3 [7], from which follows
that q̂mcls has the same asymptotic normal distribution as q̂yw.

The estimator of parameter θ is

θ̂mcls =
μ̂cls

X

q̂mcls
.(3.4)

Since, as above, N
1
2

(
θ̂mcls − θ̂yw

)
= o(1), N → ∞, then modified conditional least

squares estimator θ̂mcls is strongly consistent and asymptotically normally dis-
tributed with the same ”mean” and ”variance” as θ̂yw.
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4. Empirical results

The main results, referring to the subject of this paper, are contained in this section.
At first, we discuss the reasons of very convenient application of INAR models
based on geometric counting sequence to dynamical, self-generating counting pro-
cesses. Further, we describe the situations in which the negative binomial marginal
distribution is more appropriate to choose than the geometric one. In the second
part of this section, we corroborate this discussion with real data example.

4.1. Interpretation

The INAR models which were first developed and probably the most commonly
used in practice were those based on Bernoulli counting sequence, i.e. binomial
thinning operator. Such models are ideal for counting processes where the observed
population members or random events can contribute to the overall sum by 1 or
0, or in other words may survive or vanish through time. However, when the
observed unit is capable of generating more counting objects or produce more
new random events, then Bernoulli random variable is no more the best choice
for constructing the counting sequence. In order to cope with this problem [17]
introduced a negative binomial thinning, which was based on the geometrically
distributed counting sequence. Considering the nature of the distribution, it was
more appropriate for modeling counting processes, which referred to population
elements or random events capable of replication or production of other elements
or events. Briefly speaking, these counting objects might contribute to the overall
sum by 0, 1, 2 or more. Based on this fact, [15] obtained better performance
in modeling crime counting data using their Combined INAR(p) model based
on negative binomial thinning than by Combined INAR(p) based on binomial
thinning, introduced in [21].

Although, due to the negative binomial thinning, CGINAR(p) has proved to
be a quite good choice for these dynamical data, there are situations in which this
model could be further significantly improved. Thus, there are certain data which
are not enough compatible with geometric marginal distribution. This can be no-
ticed especially in counting processes which contain only few zeros and also are
comprised mainly of two-digit non-negative integers, i.e. which sample mode is
grater than zero. It turned out that this is a characteristic for many of the light
criminal activity counting series. So, we came up with the idea of using a negative
binomial marginal distribution, which happened to be a much better fit to the data
described. We can explain this in the following. Suppose that we want to model
a monthly counting of light criminal activities, such as purse snatching, simple
assaults or motor vehicle thefts, through a period of several years. Now, let A rep-
resent a random event of a ”registered theft of a motor vehicle by a police station”,
where P(A) = q

1+q , which correspond to our notation in preceding sections. Process
realization Xi = x means that during the ith month, there have been registered a
number of x motor vehicle thefts. So, if the marginal probability mass function is
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geometric defined by P(Xi = x) = qx

(1+q)x+1 , than {Xi = x} represents the realization
of the compound random event AA . . .A︸���︷︷���︸

x

Ac, i.e. after x registered vehicle thefts,

one theft was not registered or it was just an attempt of a crime. Unfortunately,
in real life after one realization of a Ac a sequence of crimes AA . . .A might con-
tinue in the same month. Therefore, during one month it is much more realistic to
expect to happen something like this AA . . .A︸���︷︷���︸

y1

Ac AA . . .A︸���︷︷���︸
y2

Ac . . .AA . . .A︸���︷︷���︸
yθ

Ac, where

y1+ y2+ . . .+ yθ = x. Here, during the ith month in the counting series, x represents
the number of A realized events, and θ stands for the number of realizations of
Ac, which is equivalent to {Xi = x}, where Xi : NB

(
θ,

q
1+q

)
has a negative binomial

probability mass function defined by P(Xi = x) =
(θ−1+x
θ−1

) qx

(1+q)x+θ , θ > 0, q > 0. After
all, it is obvious that negative binomial marginals are much more realistic choice
than the geometric. This is also supported by the fact that the mode of the negative
binomial distribution equals q(θ − 1), which is grater than zero far all θ > 1, which
is much more compatible with the characteristics of the considered counting data
than the geometric mode, which is always zero. All the reasons discussed above,
motivate us to introduce a combined negative binomial integer-valued autoregres-
sive model of order p which qualities will be empirically tested on the real data
series in the following.

4.2. Real data example

According to previous model interpretation, here we try to find the most appro-
priate INAR modeling of a data series representing a counting of a certain light
criminal activity. Namely, from a web sight Forecasting Principles we have ob-
tained a time series of monthly count of the motor vehicle theft (MVTheft). These
crimes are reported in the 11th police car beat in Pittsburgh in a period from January
1990 to December 2001, constituting a sequence of 144 observations. Its sample
mean, variance and autocorrelation are 4.917, 10.678 and 0.354, so the overdis-
persion is evident. The plots of the time series, the autocorrelation and partial
autocorrelation functions are given in Figure 4.1, from which we can conclude
that it is justify to use INAR(2) modeling. However, in order to perform a more
complete survey, we have decided to compare our CNBINAR model to some com-
petitive models of order 1 and order 2. With the same objective, though the data
series is overdispersed and its sample mode equals 3, i.e. more than zero, we shall
still consider the models with Poisson and geometric marginals, too. Thus, in the
case of the first order model application we have compared CNBINAR(1) to the
following INAR(1) models: INAR(1) model with Poisson marginals introduced
in [2], Quasi-binomial INAR(1) model with generalized Poisson marginals given
in [5], Geometric INAR(1) model defined in [4], New Geometric INAR(1) of [17],
Negative binomial INAR(1) given in [24, 25], Iterated INAR(1) model with negative
binomial marginals constructed in [1], Random Coefficient INAR(1) model with
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negative binomial marginals introduced in [23] and Mixed INAR(1) model with
geometric marginals defined in [16].

Also, we have tested the performance of the CNBINAR(2) against some com-
petitive known models of order 2. These are the Combined INAR(2) model with
Poisson marginals given in [21], Combined Geometric INAR(2) model introduced
in [15] and Mixed Geometric INAR(2) model defined in [19]. We carried out the
models quality comparison by calculating the Akaike and Bayesian information
criteria (AIC and BIC), as well as the root mean squares of differences between the
observations and predicted values (RMS). These values together with the maxi-
mum likelihood estimates of the model parameters are presented in Table 4.1 and
Table 4.2.

Table 4.1: ML parameter estimates, AIC, BIC and RMS for INAR(1) modeling of
the MVTheft counts data.

Model MLE AIC BIC RMS
PoINAR(1) λ̂ = 3.6782

α̂ = 0.2512 747.6862 753.6258 3.0723
GPQINAR(1) λ̂ = 2.3023

θ̂ = 0.2938
ρ̂ = 0.337 705.9824 714.8918 3.2402

GINAR(1) q̂ = 0.7847
α̂ = 0.4555 750.9045 756.8442 3.1436

NGINAR(1) μ̂ = 4.3321
α̂ = 0.6445 727.2790 733.2187 3.1996

NBINAR(1) q̂ = 0.4866
θ̂ = 4.6561
α̂ = 0.3333 702.9605 711.8699 3.0540

NBIINAR(1) n̂ = 4.2965
p̂ = 1.3959
ρ̂ = 0.3730 704.5925 713.5020 3.0536

NBRCINAR(1) n̂ = 4.1971
p̂ = 0.4598
ρ̂ = 0.3837 703.4900 712.3994 3.0545

MGINAR(1) μ̂ = 4.3254
α̂ = 0.6470
p̂ = 0.0393 729.2264 738.1359 3.2021

CNBINAR(1) q̂ = 1.1870
θ̂ = 4.1399
α̂ = 0.3707 702.5546 711.4641 3.0535

Providing the smallest values of the observed criteria, we notice that our model
is the most appropriate to use for the considered data series. This is particularly
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Fig. 4.1: MVTheft series, autocorrelations and partial autocorrelations
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Table 4.2: ML parameter estimates, AIC, BIC and RMS for INAR(2) modeling of
the MVTheft counts data.

Model MLE AIC BIC RMS
CPoINAR(2) λ̂ = 3.1594

α̂ = 0.3576
φ̂1 = 0.5040 728.3877 737.2971 2.9986

CGINAR(2) μ̂ = 4.2736
α̂ = 0.7218
φ̂1 = 0.5452 707.6046 716.5140 3.0256

MGINAR(2) μ̂ = 3.9349
α̂ = 0.7185
φ̂1 = 0.5452 706.8205 715.7299 3.0595

CNBINAR(2) q̂ = 1.2008
θ̂ = 4.0780
α̂ = 0.4633
φ̂1 = 0.5329 690.0126 701.8919 2.9716

evident among the second order models where it shows the best performance,
despite the fact of having the largest number of unknown parameters. In order
to understand better this behavior, we might investigate the adequacy of the used
marginal distributions in case of the observed counting. For this purpose we have
derived the expected probabilities for all the considered distributions, which are
given in respect of the observed probabilities in Table 4.3. In support of this, the
observed frequencies and the expected frequencies for each of the applied processes
marginal distributions are presented in Figure 4.2 and Figure 4.3, respectively. It
is easy to see that the negative binomial and the generalized Poisson distribution
provide the best fits of the considered data. Since, based on their graphs it is not
clear which of these two distributions is the most appropriate, we have applied a
χ2 fit test. The results are given in Table 4.4. Based on the p-value it seems that
the generalized Poisson distribution gives the best fit. However, our model still
shows the best performance. This could only be justified by implementation of
the thinning operator based on the geometric counting sequence, which happened
to be in better accord with the self-generating nature of the crime data than the
binomial thinning operator, used in the corresponding GPQINAR model.

Finally, we can conclude that the CNBINAR is the only one, among all the
considered models, which have both, the negative binomial thinning operator and
the negative binomial marginals. So, these together with the occurring nature of
MVTheft events, according to the model interpretation given above, provide an
explanation of the most appropriate performance of here introduced model.
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Table 4.3: The observed and expected probabilities for the MVTheft counts data.

Observed
probabilities Geometric Poisson NB GP

0 0.0486 0.1690 0.0073 0.0386 0.0356
1 0.0417 0.1404 0.0360 0.0874 0.0860
2 0.1528 0.1167 0.0885 0.1225 0.1241
3 0.1597 0.0970 0.1451 0.1365 0.1395
4 0.1111 0.0806 0.1783 0.1325 0.1350
5 0.1181 0.0670 0.1753 0.1172 0.1184
6 0.1250 0.0557 0.1437 0.0969 0.0969
7 0.0764 0.0462 0.1009 0.0762 0.0754
8 0.0278 0.0384 0.0620 0.0575 0.0565
9 0.0417 0.0319 0.0339 0.0421 0.0411
10 0.0278 0.0265 0.0167 0.0299 0.0292
11 0.0278 0.0221 0.0074 0.0208 0.0203
12 0.0069 0.0183 0.0031 0.0142 0.0140
13 0.0069 0.0152 0.0012 0.0096 0.0095
14 0.0000 0.0127 0.0004 0.0063 0.0064
15 0.0278 0.0623 0.0002 0.0118 0.012

Table 4.4: χ2 fit tests.

Distribution Geometric Poisson NB GP
χ2 test 59.6451 613.4258 14.3829 14.1152
p-value 0.0000 0.0000 0.3474 0.3658
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17. M.M. Ristić, H.S. Bakouch and A.S. Nastić: A new geometric first-order integer-valued
autoregressive (NGINAR(1)) process. J. Stat. Plan. Inf. 139 (2009), 2218–2226.
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