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Abstract. The aim of this paper is to obtain a coupled coincidence point theorem and a
common coupled fixed point theorem of contractive type mappings involving rational
expressions in the framework of a complex-valued metric spaces. The results of this
paper generalize and extend the results of Bhaskar and Lakhmikantham [7], Azam et al.
[3] and several known results in complex-valued metric spaces.
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1. Introduction

The fixed point theory has gained impetus, due to its wide range of applicability
to resolve diverse problems emanating from the theory of non-linear differential
equations, theory of non-linear integral equations, game theory, mathematical eco-
nomics and so forth.

The first fixed point theorem was given by Brouwer [9] in 1912, but the credit
of making concept useful and popular goes to the Polish mathematician Stephan
Banach [5] who proved the famous contraction mapping theorem in 1922 which
states that: Let (X, d) be a complete metric space and let T : X→ X be a contraction
on X, that is, there exists a constant λ ∈ [0, 1) such that d(Tx,Ty) � λd(x, y) for all
x, y ∈ X. Then T has a unique fixed point in X.

The Banach contraction principle [5] is one of the most important and useful
results in the metric fixed point theory. It guarantees the existence and uniqueness
of the fixed point of certain self-maps of metric spaces and provides a construc-
tive method to find those fixed points. This principle includes different direction
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in different spaces adopted by mathematicians; for example, 2-metric spaces, G-
metric spaces, partial metric spaces, cone metric spaces have already been obtained.

Recently, Azam et al [3] introduced a new space called complex-valued metric
space which is more general than the well-known metric space, and obtained suf-
ficient conditions for the existence of common fixed points of a pair of contractive
type mappings involving rational expression. Subsequently, several authors have
studied the existence and uniqueness of the fixed point and common fixed points
of self-mappings in view of contrasting contractive conditions. Some of these in-
vestigations are noted in ([6], [10], [14],[17], [21]).

Though the complex-valued metric spaces form a special class of cone metric
spaces, yet this idea is intended to define rational expressions which are not mean-
ingful in cone metric spaces and thus many result of analysis cannot be generalized
to cone metric spaces.

In [7], Bhaskar and Lakhmikantham introduced the concept of coupled fixed
points for a given partially ordered setX. Samet et al ([19], [20]) proved that most of
the coupled fixed point theorems ( on ordered metric spaces) are infect immediate
consequences of the well-known fixed point theorems in the literature. Very re-
cently, Kutbi et al [14] proved the existence and uniqueness of the common coupled
fixed point in complete complex-valued metric spaces in view of diverse contrac-
tive condition.

The aim of this paper is to establish a coupled coincidence point theorem for
mappings on complex-valued metric spaces(in short CVMS) along with generalized
contraction involving rational expression and a unique common coupled fixed
point theorem using the notion of w-compatible mappings. Our results extend and
improve several existing fixed point results in the literature.

2. Preliminaries

Let C be the set of complex numbers and z1, z2 ∈ C, we define a partial order �
on C as follows:

z1 � z2 if and only if Re(z1) � Re(z2) and Im(z1) � Im(z2).

We write z1 ≺ z2 if and only if Re(z1) < Re(z2) and Im(z1) < Im(z2).

Consistent with Azam et al. [3], we state some definitions and results about the
complex-valued metric space to prove our main results.

Definition 2.1. [3] Let X be a nonempty set. Suppose that the mapping d : X ×
X→ Csatisfies the following conditions:
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(d1) 0 � d(x, y) for all x, y ∈ X;

(d2) d(x, y) = 0 if and only if x = y for all x, y ∈ X;

(d3) d(x, y) = d(y, x) for all x, y ∈ X;

(d4) d(x, y) � d(x, z)+ d(z, y) for all x, y ∈ X;

Then d is called a complex-valued metric on X, and (X, d) is called a complex-valued
metric space.

Definition 2.2. [3] Let (X, d) be a complex-valued metric space.

I. A point x ∈ X is called interior point of a set B ⊆ X whenever there exists 0 ≺ r ∈ C
such that N(x, r) :=

{
y ∈ X : d(x, y) ≺ r

} ⊆ B.

II. A point x ∈ X is called limit point of a set B ⊆ X whenever there exists 0 ≺ r ∈ C
such that N(x, r)

⋂
(B − {x}) � φ.

III. A subset B ⊆ X is called open whenever each element of B is an interior point
of B.

IV. A subset B ⊆ X is called closed whenever each limit point of B belongs to B.

V. The family F = {N(x, r) : x ∈ X, 0 ≺ r} is a sub-basis for a topology on X. We
denote this complex topology by τc. Indeed, the topology τc is Hausdorff.

Definition 2.3. [3] Let (X, d) be a complex-valued metric space, and let {xn} be a
sequence in X and x ∈ X.

I. If for every c ∈ C with 0 ≺ c there is N ∈ N such that for all n > N, d(xn, x) ≺ c
then {xn} is said to be convergent, if {xn} converges to x and x is the limit point
of {xn}. We denote this by xn → x as n→∞ or limn→∞ xn = x.

II. If for every c ∈ Cwith 0 ≺ c there is N ∈N such that for all n,m > N, d(xn, xm) ≺
c, then {xn} is said to be Cauchy sequence.

III. If every Cauchy sequence in X is convergent, then (X, d) is said to be a complete
complex-valued metric space.

Lemma 2.1. [3] Let (X, d) be a complex-valued metric space, and let {xn} be a sequence in
X. Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.

Lemma 2.2. [3] Let (X, d) be a complex-valued metric space, and let {xn} be a sequence in
X. Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n→∞.

Definition 2.4. [7] An element (x, y) ∈ X×X is said to be a coupled fixed point of the
mapping F : X × X→ X if F(x, y) = x and F(y, x) = y.
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Definition 2.5. [15] An element
(
x, y
) ∈ X × X is said to be

I. A coupled coincidence point of mappings F : X × X → X and � : X → X if
�x = F(x, y) and �y = F(y, x), and (�x, �y) is called a coupled point of coincidence
if there exists (u, v) ∈ X × X such that x = �u = F(u, v) and y = �v = F(v, u).

II. A common coupled fixed point of mappings F : X × X → X and � : X → X if
x = �x = F(x, y) and y = �y = F(y, x).

Definition 2.6. [2] The mappings F : X × X → X and � : X → X are called w-
compatible if �(F(x, y)) = F(�x, �y), whenever �x = F(x, y) and �y = F(y, x).

3. Main Results

3.1. Coupled Coincidence Point Result in Complex-Valued Metric Spaces

Theorem 3.1. Let (X, d) be a complex-valued metric space. Let F : X × X → X and
� : X → X be two mappings. Suppose that there exist nonnegative constants ai ∈
[0, 1), i = 1, 2, ..., 6 such that

∑6
i=1 ai < 1 and for all x, y, u, v ∈ X

d(F(x, y), F(u, v)) � a1d(�x, �u)+ a2(�y, �v)+ a3
d(�x, F(x, y))d(�u, F(u, v))

d(�x, �u)

+ a4
d(�x, F(u, v))d(�u, F(x, y))

d(�x, �u)

+ a5
d(�y, F(y, x))d(�v, F(v, u))

d(�y.�v)

+ a6
d(�y, F(v, u))d(�v, F(y, x))

d(�y, �v)
.

Suppose F(X × X) ⊆ �(X) and �(X) is a complete subspace ofX. Then F and � have a
coupled coincidence point (x∗, y∗) ∈ X × X.

Proof. Let x0 and y0 are arbitrary elements of X. Set �x1 = F(x0, y0), �y1 = F(y0, x0),
this can be done because F(X × X) ⊆ �(X). Continuing this process, we obtain two
sequences {xn} and {yn} such that �xn+1 = F(xn, yn) and �yn+1 = F(yn, xn) for all n � 0.
Then we have

d(�xn, �xn+1) = d(F(xn−1, yn−1), F(xn, yn))
� a1d(�xn−1, �xn) + a2d(�yn−1, �yn)

+ a3
d(�xn−1, F(xn−1, yn−1))d(�xn, F(xn, yn))

d(�xn−1, �xn)

+ a4
d(�xn−1, F(xn, yn))d(�xn, F(xn−1, yn−1))

d(�xn−1, �xn)
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+ a5
d(�yn−1, F(yn−1, xn−1))d(�yn, F(yn, xn))

d(�yn−1, �yn)

+ a6
d(�yn−1, F(yn, xn))d(�yn, F(yn−1, xn−1))

d(�yn−1, �yn)
� a1d(�xn−1, �xn) + a2d(�yn−1, �yn)

+ a3
d(�xn−1, �xn)d(�xn, �xn+1)

d(�xn−1, �xn)

+ a4
d(�xn−1, �xn+1)d(�xn, �xn)

d(�xn−1, �xn)

+ a5
d(�yn−1, �yn)d(�yn, �yn+1)

d(�yn−1, �yn)

+ a6
d(�yn−1, �yn+1)d(�yn, �yn)

d(�yn−1, �yn)
.

Which implies that
∣∣∣d(�xn, �xn+1)

∣∣∣ � a1

∣∣∣d(�xn−1, �xn)
∣∣∣ + a2

∣∣∣d(�yn−1, �yn)
∣∣∣

+ a3

∣∣∣d(�xn, �xn+1)
∣∣∣ + a5

∣∣∣d(�yn, �yn+1)
∣∣∣ .(3.1)

Similarly, we can prove that
∣∣∣d(�yn, �yn+1)

∣∣∣ � a1

∣∣∣d(�yn−1, �yn)
∣∣∣ + a2

∣∣∣d(�xn−1, �xn)
∣∣∣

+ a3

∣∣∣d(�yn, �yn+1)
∣∣∣ + a5

∣∣∣d(�xn, �xn+1)
∣∣∣ .(3.2)

Put dn = ‖d(�xn, �xn+1)‖ + ‖d(�yn, �yn+1)‖.
Adding inequalities (3.1) and (3.2), one can assert that,

dn � (a1 + a2)dn−1 + (a3 + a5)dn,(3.3)

that is,
dn � hdn−1 where h =

a1 + a2

1 − (a3 + a5)
< 1

Thus, we have
dn � hdn−1 � h2dn−2 � h3dn−3 � · · · � hnd0(3.4)

We shall show that {xn} and {yn} are Cauchy sequences. If m > n, then we have
∣∣∣d(�xn, �xm)

∣∣∣ + ∣∣∣d(�yn, �ym)
∣∣∣ � ∣∣∣d(�xn, �xn+1)

∣∣∣ + ∣∣∣d(�yn, �yn+1)
∣∣∣ + ∣∣∣d(�xn+1, �xn+2)

∣∣∣
+
∣∣∣d(�yn+1, �yn+2)

∣∣∣ + · · · + ∣∣∣d(�xm−1, �xm)
∣∣∣ + ∣∣∣d(�ym−1, �ym)

∣∣∣
� dn + dn+1 + · · · + dm−1

� hnd0 + hn+1d0 + · · · + hm−1d0

�
hn

1 − h
d0 → 0 as n→∞.
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Hence {�xn} and {�yn} are Cauchy sequences in �(X). Since �(X) is complete, there
exists x∗ and y∗ ∈ X such that �xn → �x∗ and �yn → �y∗ as n→∞.
On the other hand, we have

d(F(x∗, y∗), �x∗) � d(F(x∗, y∗), �xn+1) + d(�xn+1, �x∗)
= d(F(x∗, y∗), F(xn, yn)) + d(�xn+1, �x∗)
� a1d(�x∗, �xn) + a2d(�y∗, �yn)

+ a3
d(�x∗, F(x∗, y∗))d(�xn, F(xn, yn))

d(�x∗, �xn)

+ a4
d(�x∗, F(xn, yn))d(�xn, F(x∗, y∗))

d(�x∗, �xn)

+ a5
d(�y∗, F(y∗, x∗))d(�yn, F(yn, xn))

d(�y∗, �yn)

+ a6
d(�y∗, F(yn, xn))d(�yn, F(y∗, x∗))

d(�y∗, �yn)
+ d(�xn+1, �x∗)
� a1d(�x∗, �xn) + a2d(�y∗, �yn)

+ a3
d(�x∗, F(x∗, y∗))[d(�xn, �x∗) + d(�x∗, �xn+1)]

d(�x∗, �xn)

+ a4
d(�x∗, �xn+1)[d(�xn, �x∗) + d(�x∗, F(x∗, y∗))]

d(�x∗, �xn)

+ a5
d(�y∗, F(y∗, x∗))[d(�yn, �y∗) + d(�y∗, �yn+1)]

d(�y∗, �yn)

+ a6
d(�y∗, �yn+1)[d(�yn, �y∗) + d(�y∗, F(y∗, x∗))]

d(�y∗, �yn)
+ d(�xn+1, �x∗),

which implies that
∣∣∣d(F(x∗, y∗), �x∗)

∣∣∣ � a1

∣∣∣d(�x∗, �xn)
∣∣∣ + a2

∣∣∣d(�y∗, �yn)
∣∣∣

+ a3

∣∣∣d(�x∗, F(x∗, y∗))
∣∣∣ {∣∣∣d(�xn, �x∗)

∣∣∣ + ∣∣∣d(�x∗, �xn+1)
∣∣∣}∣∣∣d(�x∗, �xn)

∣∣∣

+ a4

∣∣∣d(�x∗, �xn+1)
∣∣∣ {∣∣∣d(�xn, �x∗)

∣∣∣ + ∣∣∣d(�x∗, F(x∗, y∗))
∣∣∣}∣∣∣d(�x∗, �xn)

∣∣∣

+ a5

∣∣∣d(�y∗, F(y∗, x∗))
∣∣∣ {∣∣∣d(�yn, �y∗)

∣∣∣ + ∣∣∣d(�y∗, �yn+1)
∣∣∣}∣∣∣d(�y∗, �yn)

∣∣∣

+ a6

∣∣∣d(�y∗, �yn+1)
∣∣∣ {∣∣∣d(�yn, �y∗)

∣∣∣ + ∣∣∣d(�y∗, F(y∗, x∗))
∣∣∣}∣∣∣d(�y∗, �yn)

∣∣∣
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+
∣∣∣d(�xn+1, �x∗)

∣∣∣

Since �xn → �x∗ and �yn → �y∗ as n→ ∞ , we have
∣∣∣d(F(x∗, y∗), �x∗)

∣∣∣ � 0.
That is,F(x∗, y∗) = �x∗.

Similarly one can show that F(y∗, x∗) = �y∗.

Hence (x∗, y∗) is a coupled coincidence point of F and �.

3.2. Common Coupled Fixed Point Result in Complex-Valued Metric Spaces
The condition of Theorem 3.1 are not enough to prove the existence of a common
coupled fixed point for the mappings F and �. By applying the condition of w-
compatibility on F and �, we obtain the following common coupled fixed point
theorem.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1 are not enough to prove the
existence of a common coupled fixed point for the mappings F and �. By applying the
condition of w-compatibility on F and �, we obtain the following common coupled fixed
point theorem, if F and � are w-compatible, then F and � have a unique common coupled
fixed point. Moreover, a common coupled fixed point of F and � is of the form (u, v) for
some u, v ∈ X.

Proof. The existence of coupled coincidence point (x∗, y∗) of F and � follows from
Theorem 3.1. Then (�x∗, �y∗) is a coupled point of coincidence of F,� and so
�x∗ = F(x∗, y∗) and �y∗ = F(y∗, x∗).

First we will show that this coupled point of coincidence is unique.

For this, suppose that F and � have another coupled point of coincidence (�x′, �y′),
that is, �x′ = F(x′, y′) and �y′ = F(y′, x′) where (x′, y′) ∈ X × X. Then we have

d(�x∗, �x′) = d(F(x∗, y∗), F(x′, y′))
� a1d(�x∗, �x′) + a2d(�y∗, �y′)

+ a3
d(�x∗, F(x∗, y∗))d(�x′, F(x′, y′))

d(�x∗, �x′)

+ a4
d(�x∗, F(x′, y′))d(�x′, F(x∗, y∗))

d(�x∗, �x′)

+ a5
d(�y∗, F(y∗, x∗))d(�y′, F(y′, x′))

d(�y∗, �y′)

+ a6
d(�y∗, F(y′, x′))d(�y′, F(y∗, x∗))

d(�y∗, �y′) .
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This implies that
∣∣∣d(�x∗, �x′)

∣∣∣ � a1

∣∣∣d(�x∗, �x′)
∣∣∣ + a2

∣∣∣d(�y∗, �y′)
∣∣∣

+ a3

∣∣∣d(�x∗, �x∗)
∣∣∣ ∣∣∣d(�x′, �x′)

∣∣∣∣∣∣d(x∗, �x′)
∣∣∣

+ a4

∣∣∣d(�x∗, �x′)
∣∣∣ ∣∣∣d(�x′, �x∗)

∣∣∣∣∣∣d(�x∗, �x′)
∣∣∣

+ a5

∣∣∣d(�y∗, �y∗)
∣∣∣ ∣∣∣d(�y′, �y′)

∣∣∣∣∣∣d(�y∗, �y′)
∣∣∣

+ a6

∣∣∣d(�y∗, �y′)
∣∣∣ ∣∣∣d(�y′, �y∗)

∣∣∣∣∣∣d(�y∗, �y′)
∣∣∣

� a1

∣∣∣d(�x∗, �x′)
∣∣∣ + a2

∣∣∣d(�y∗, �y′)
∣∣∣

+ a4

∣∣∣d(�x∗, �x′)
∣∣∣ + a6

∣∣∣d(�y∗, �y′)
∣∣∣ .

Hence
∣∣∣d(�x∗, �x′)

∣∣∣ � (a1 + a4)
∣∣∣d(�x∗, �x′)

∣∣∣ + (a2 + a6)
∣∣∣d(�y∗, �y′)

∣∣∣ .(3.5)

Similarly, we can show that
∣∣∣d(�y∗, �y′)

∣∣∣ � (a1 + a4)
∣∣∣d(�y∗, �y′)

∣∣∣ + (a2 + a6)
∣∣∣d(�x∗, �x′)

∣∣∣ .(3.6)

Adding inequalities (3.5) and (3.6), we get
∣∣∣d(�x∗, �x′)

∣∣∣ + ∣∣∣d(�y∗, �y′)
∣∣∣ � (a1 + a2 + a4 + a6){

∣∣∣d(�x∗, �x′)
∣∣∣ + ∣∣∣d(�y∗, �y′)

∣∣∣}.
Since (a1 + a2 + a4 + a6) < 1. Therefore,

∣∣∣d(�x∗, �x′)
∣∣∣ + ∣∣∣d(�y∗, �y′)

∣∣∣ � 0

.

Hence d(�x∗, �x′) = 0 and d(�y∗, �y′) = 0, i.e.,�x∗ = �x′ and �y∗ = �y′.

Thus, (�x∗, �y∗) = (u, v) (say) is the unique coupled point of coincidence of F
and �. Now if F and � are w-compatible, then �u = �(F(x∗, y∗)) = F(�x∗, �y∗) =
F(u, v) = w(say). Similarly, we obtain �v = �(F(y∗, x∗)) = F(�y∗, �x∗) = F(v, u) = z
(say). So,(w, z) is another coupled point of coincidence of F and �. By uniqueness,
we have (u, v) = (w, z), that is, �u = F(u, v) = u and �v = F(v, u) = v.Thus (u, v) is the
unique common coupled fixed point of F and �.

Next, we present an example to illustrate our results.
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Example 3.1. Let X = {ix : x ∈ [0, 1]} and consider a complex-valued metric d : X × X → X
defined by

d(x, y) = i
∣∣∣x − y

∣∣∣ for all x, y ∈ X

.
Then (X, d) is a complex-valued metric space.
Define the mappings F : X ×X→ X and � : X→ X by F(x, y) = i

(
x
9 +

y
7

)
and �(x) = i x

2 for all
x, y ∈ [0, 1].
Then we obtain,

d(F(x, y),F(u, v)) = i
∣∣∣∣∣i
(x
9
+

y
7

)
− i
(u
9
+

v
7

)∣∣∣∣∣
= i

∣∣∣∣∣
2
9

i
(x
2
− u

2

)
+

2
7

i
( y
2
− v

2

)∣∣∣∣∣
�

2
9

i
∣∣∣∣i x2 − i

u
2

∣∣∣∣ + 2
7

i
∣∣∣∣i y

2
− i

v
2

∣∣∣∣
�

2
9

d
(
�x, �u

)
+

2
7

d
(
�y, �v

)
,

where a1 =
2
9 , a2 =

2
7 , ai = 0, i = 3, 4, 5, 6. Note that a1+a2 =

2
9 +

2
7 < 1, F (X × X) ⊆ �(X) and

�(X) is a complete subspace of X. Hence the condition of Theorem 3.1 are satisfied, that is, F
and � have a coupled coincidence point (0,0). Furthermore, since F and � are w-compatible,
hence, Theorem 3.2 shows that (0,0) is the unique common coupled fixed point of F and �.
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