Abstract. The main objective of this article is to introduce the concepts of \(f \)-lacunary statistical convergence of order \(\alpha \) and strong \(f \)-lacunary summability of order \(\alpha \) of double sequences and give some inclusion relations between these concepts.

Keywords: \(f \)-lacunary statistical convergence; strong \(f \)-lacunary summability; sequence spaces.

1. Introduction

In 1951, Steinhaus [41] and Fast [19] introduced the concept of statistical convergence while later in 1959, Schoenberg [40] reintroduced it independently. Bhardwaj and Dhawan [4], Caserta et al. [5], Connor [6], Çakallı [11], Çınar et al. [12], Çolak [13], Et et al. ([15],[17]), Fridy [21], Işık [27], Salat [39], Di Maio and Kočinac [14], Mursaleen et al. ([31],[30],[32]), Belen and Mohiuddine [3] and many authors investigated the arguments related to this notion.

A modulus \(f \) is a function from \([0, \infty)\) to \([0, \infty)\) such that

i) \(f(x) = 0 \) if and only if \(x = 0 \),

ii) \(f(x + y) \leq f(x) + f(y) \) for \(x, y \geq 0 \),

iii) \(f \) is increasing,

iv) \(f \) is continuous from the right at 0.

It follows that \(f \) must be continuous everywhere on \([0, \infty)\). A modulus may be unbounded or bounded.

Aizpuru et al. [1] defined \(f \)-density of a subset \(E \subset \mathbb{N} \) for any unbounded modulus \(f \) by

\[
d_f(E) = \lim_{n \to \infty} \frac{f(|\{k \leq n : k \in E\}|)}{f(n)}, \text{ if the limit exists}
\]

Received July 10, 2019; accepted October 07, 2019

2010 Mathematics Subject Classification. Primary 40A05; Secondary 40C05, 46A45

495
and defined $f-$statistical convergence for any unbounded modulus f by
\[
d^f (\{ k \in \mathbb{N} : |x_k - \ell| \geq \varepsilon \}) = 0
\]
i.e.
\[
\lim_{n \to \infty} \frac{1}{f(n)} f (\{ k \leq n : |x_k - \ell| \geq \varepsilon \}) = 0,
\]
and we write it as $S^f - \lim x_k = \ell$ or $x_k \to \ell (S^f)$.

Every $f-$statistically convergent sequence is statistically convergent, but a statistically convergent sequence does not need to be $f-$statistically convergent for every unbounded modulus f.

By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r)$ of non-negative integers such that $k_0 = 0$ and $h_r = (k_r - k_{r-1}) \to \infty$ as $r \to \infty$. The intervals determined by θ will be denoted by $I_r = (k_r, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r, and $q_1 = k_1$ for convenience.

In [22], Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that a sequence (x_k) of real numbers is called lacunary statistically convergent to a real number ℓ, if
\[
\lim_{r \to \infty} \frac{1}{h_r} |\{ k \in I_r : |x_k - \ell| \geq \varepsilon \}| = 0
\]
for every positive real number ε.

Lacunary sequence spaces were studied in ([7],[8],[9],[10],[18],[20],[22],[23],[25],[26],[28],[36],[43]).

A double sequence $x = (x_{j,k})_{j,k=0}^\infty$ has Pringsheim limit ℓ provided that given for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_{j,k} - \ell| < \varepsilon$ whenever $j, k > N$. In this case, we write $P - \lim x = \ell$ (see Pringsheim [38]).

Let $K \subseteq \mathbb{N} \times \mathbb{N}$ and $K (m,n) = \{(j,k) : j \leq m, k \leq n\}$. The double natural density of K is defined by
\[
\delta_2 (K) = P - \lim_{m,n} \frac{1}{mn} |K (m,n)|, \text{ if the limit exists.}
\]

A double sequence $x = (x_{j,k})_{j,k \in \mathbb{N}}$ is said to be statistically convergent to a number ℓ if for every $\varepsilon > 0$ the set $\{(j,k) : j \leq m, k \leq n : |x_{j,k} - \ell| \geq \varepsilon\}$ has double natural density zero (see Mursaleen and Edely [31]).

In [35], Patterson and Savas introduced the concept of double lacunary sequence in the sense that double sequence $\theta'' = \{(k_r, l_s)\}$ is called double lacunary sequence, if there exists two increasing sequences of integers such that
\[
k_0 = 0, h_r = k_r - k_{r-1} \to \infty \text{ as } r \to \infty
\]
and
\[
l_0 = 0, h_s = l_s - l_{s-1} \to \infty \text{ as } s \to \infty.
\]
where \(k_{r,s} = k_r l_s, h_{r,s} = h_r h_s \) and the following intervals are determined by \(\theta'' \), \(I_r = \{(k) : k_{r-1} < k \leq k_r\} \), \(I_s = \{(l) : l_{s-1} \leq l < l_s\} \), \(I_{r,s} = \{(k,l) : k_{r-1} < k \leq k_r \text{ and } l_{s-1} < l \leq l_s\} \), \(q_r = \frac{k_r}{k_{r-1}} \), \(q_s = \frac{l_s}{l_{s-1}} \) and \(q_{r,s} = q_r q_s \).

The double number sequence \(x \) is \(S_{\theta''} - \text{convergent} \) to \(\ell \) provided that for every \(\varepsilon > 0 \),

\[
P - \lim_{r,s \to \infty} \frac{1}{h_{r,s}} \left| \{(k,l) \in I_{r,s} : |x_{k,l} - \ell| \geq \varepsilon\} \right| = 0.
\]

In this case, we write \(S_{\theta''} - \lim x_{k,l} = \ell \) or \(x_{k,l} \to \ell (S_{\theta''}) \) (see [35]).

The notion of a modulus was given by Nakano [33], Maddox [29] used a modulus function to construct some sequence spaces. Afterwards, different sequence spaces defined by modulus have been studied by Altın and Et [2], Et et al. [16], Işık [27], Gaur and Muravaleen [24], Nuray and Savaş [34], Pehlivan and Fisher [37], Şengül [42] and many others.

2. Main Results

In this section, we will introduce the concepts of \(f \)-lacunary statistical convergence of order \(\alpha \) and strong \(f \)-lacunary summability of order \(\alpha \) of double sequences, where \(f \) is an unbounded modulus and also give some results related to these concepts.

Definition 2.1. Let \(f \) be an unbounded modulus, \(\theta'' = \{(k_r, l_s)\} \) be a double lacunary sequence and \(\alpha \) be a real number such that \(0 < \alpha \leq 1 \). We say that the double sequence \(x = (x_{k,l}) \) is \(f \)-lacunary statistically convergent of order \(\alpha \), if there is a real number \(\ell \) such that

\[
\lim_{r,s \to \infty} \frac{1}{f(h_{r,s})^\alpha} \int \left| \{(k,l) \in I_{r,s} : |x_{k,l} - \ell| \geq \varepsilon\} \right| = 0.
\]

This space will be denoted by \(S_{\theta''}^{f,\alpha} \). In this case, we write \(S_{\theta''}^{f,\alpha} - \lim x_{k,l} = \ell \) or \(x_{k,l} \to \ell (S_{\theta''}^{f,\alpha}) \). In the special case \(\theta'' = \{(2^r, 2^s)\} \), we shall write \(S_{\theta''}^{f,\alpha} \) instead of \(S_{\theta''}^{f,\alpha} \).

Definition 2.2. Let \(f \) be a modulus function, \(\theta'' = \{(k_r, l_s)\} \) be a double lacunary sequence, \(p = (p_k) \) be a sequence of strictly positive real numbers and \(\alpha \) be a positive real number. We say that the double sequence \(x = (x_{k,l}) \) is strongly \(w^\alpha \left[\theta'', f, p \right] \)-summable to \(\ell \) (a real number), if there is a real number \(\ell \) such that

\[
\lim_{r,s \to \infty} \frac{1}{h_{r,s}} \sum_{(k,l) \in I_{r,s}} f \left(|x_{k,l} - \ell| \right)^{p_k} = 0.
\]
In this case we write $w^\alpha \left[\theta'' , f , p \right] - \lim x_{k,l} = \ell$. The set of all strongly $w^\alpha \left[\theta'' , f , p \right] -$ summable sequences will be denoted by $w^\alpha \left[\theta'' , f , p \right]$. If we take $p_k = 1$ for all $k \in \mathbb{N}$, we write $w^\alpha \left[\theta'' , f \right]$ instead of $w^\alpha \left[\theta'' , f , p \right]$.

Definition 2.3. Let f be an unbounded modulus, $\theta'' = \{(k_r , l_s)\}$ be a double lacunary sequence, $p = (p_k)$ be a sequence of strictly positive real numbers and α be a positive real number. We say that the double sequence $x = (x_{k,l})$ is strongly $w_{\theta''}^{\alpha} (p)$—summable to ℓ (a real number), if there is a real number ℓ such that

$$
\lim_{r,s \to \infty} \frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} |f(|x_{k,l} - \ell|)|^{p_k} = 0.
$$

In the present case, we write $w_{\theta''}^{\alpha} (p) - \lim x_{k,l} = \ell$. The set of all strongly $w_{\theta''}^{\alpha} (p)$—summable sequences will be denoted by $w_{\theta''}^{\alpha} (p)$. In case of $p_k = p$ for all $k \in \mathbb{N}$ we write $w_{\theta''}^{\alpha} (p)$ instead of $w_{\theta''}^{\alpha} (p)$.

Definition 2.4. Let f be an unbounded modulus, $\theta'' = \{(k_r , l_s)\}$ be a double lacunary sequence, $p = (p_k)$ be a sequence of strictly positive real numbers and α be a positive real number. We say that the double sequence $x = (x_{k,l})$ is strongly $w_{\theta''}^{\alpha,f} (p)$—summable to ℓ (a real number), if there is a real number ℓ such that

$$
\frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} |x_{k,l} - \ell|^{p_k} = 0.
$$

In the present case, we write $w_{\theta''}^{\alpha,f} (p) - \lim x_{k,l} = \ell$. The set of all strongly $w_{\theta''}^{\alpha,f} (p)$—summable sequences will be denoted by $w_{\theta''}^{\alpha,f} (p)$. In case of $p_k = p$ for all $k \in \mathbb{N}$ we write $w_{\theta''}^{\alpha,f} (p)$ instead of $w_{\theta''}^{\alpha,f} (p)$.

The proof of each of the following results is fairly straightforward, so we choose to state these results without proof, where we shall assume that the sequence $p = (p_k)$ is bounded and $0 < h = \inf_k p_k \leq p_k \leq \sup_k p_k = H < \infty$.

Theorem 2.1. The space $w_{\theta''}^{\alpha,f} (p)$ is paranormed by

$$
g(x) = \sup_{r,s} \left\{ \frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} |f(|x_{k,l}|)|^{p_k} \right\}^{\frac{1}{p_k}}
$$

where, $M = \max(1, H)$.

Proposition 2.1. ([37]) Let f be a modulus and $0 < \delta < 1$. Then for each $\|u\| \geq \delta$, we have $f (\|u\|) \leq 2 f (1) \delta^{-1} \|u\|$.
\textbf{Theorem 2.2.} Let f be an unbounded modulus, α be a real number such that $0 < \alpha \leq 1$ and $p > 1$. If $\lim_{u \to \infty} \inf \frac{f(u)}{u} > 0$, then $w_{0^*}^{f,\alpha} [p] = w_{0^*}^{\alpha} [p]$.

\textit{Proof.} Let $p > 1$ be a positive real number and $x \in w_{0^*}^{f,\alpha} [p]$. If $\lim_{u \to \infty} \inf \frac{f(u)}{u} > 0$ then there exists a number $c > 0$ such that $f(u) > cu$ for $u > 0$. Clearly

$$\frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s}} |f(|x_{k,l} - \ell|)|^p \geq \frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s}} [c|x_{k,l} - \ell|]^p = \frac{c^p}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s}} |x_{k,l} - \ell|^p,$$

and therefore $w_{0^*}^{f,\alpha} [p] \subseteq w_{0^*}^{\alpha} [p]$.

Now let $x \in w_{0^*}^{\alpha} [p]$. Then we have

$$\frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s}} |x_{k,l} - \ell|^p \to 0 \text{ as } r, s \to \infty.$$

Let $0 < \delta < 1$. We can write

$$\frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s}} |x_{k,l} - \ell|^p \geq \frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s} \atop |x_{k,l} - \ell| \geq \delta} |x_{k,l} - \ell|^p \geq \frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s} \atop |x_{k,l} - \ell| \geq \delta} \left[\frac{f(|x_{k,l} - \ell|)}{2f(1)\delta^{-1}} \right]^p \geq \frac{\delta^p}{[f(h_{r,s})]^\alpha} 2^p f(1)^p \sum_{(k,l) \in I_{r,s}} |x_{k,l} - \ell|^p$$

by Proposition 2.1. Therefore $x \in w_{0^*}^{f,\alpha} [p]$.

If $\lim_{u \to \infty} \inf \frac{f(u)}{u} = 0$, the equality $w_{0^*}^{f,\alpha} [p] = w_{0^*}^{\alpha} [p]$ cannot be hold as shown in the following example:

Let $f(x) = 2\sqrt{x}$ and define a double sequence $x = (x_{k,l})$ by

$$x_{k,l} = \begin{cases} \frac{3}{2} \sqrt{h_{r,s}}, & \text{if } k = k_r \text{ and } l = l_s, \\ 0, & \text{otherwise} \end{cases} \quad r, s = 1, 2, \ldots.$$

For $\ell = 0$, $\alpha = \frac{3}{4}$ and $p = \frac{6}{5}$, we have

$$\frac{1}{[f(h_{r,s})]^\alpha} \sum_{(k,l) \in I_{r,s}} |f(|x_{k,l}|)|^p = \left(\frac{2 [h_{r,s}]^{\frac{3}{4}}}{(2 \sqrt{h_{r,s}})^{\frac{3}{4}}} \right)^p \to 0 \quad \text{as } r, s \to \infty.$$
H. Şengül, M. Et and Y. Altin

hence \(x \in w^{f,\alpha}_{\theta''} [p] \), but

\[
\frac{1}{[f(h)]^\alpha} \sum_{(k,l) \in I_{r,s}} |x_{k,l}|^p = \left(\frac{(\sqrt{h_{r,s}})^{\frac{p}{\alpha}}}{(2\sqrt{h_{r,s}})^{\frac{p}{\alpha}}} \right) \to \infty \quad \text{as} \quad r, s \to \infty
\]

and so \(x \notin w^{\alpha,\theta''} f [p] \). \(\square \)

Maddox [29] showed that the existence of an unbounded modulus \(f \) for which there is a positive constant \(c \) such that

\(f(xy) \geq cf(x)f(y), \) for all \(x \geq 0, y \geq 0 \).

Theorem 2.3. Let \(f \) be an unbounded modulus and \(\alpha \) be a positive real number. If \(\lim_{u \to \infty} \frac{f(u)^{\alpha}}{u^\alpha} > 0 \), then \(w^{\alpha} \left[\theta'', f \right] \subset S_{\theta''}^{f,\alpha} \).

Proof. Let \(x \in w^{\alpha} \left[\theta'', f \right] \) and \(\epsilon > 0 \) be given and \(\sum_1, \sum_2 \) denote the sums over \((k,l) \in I_{r,s} \), \(|x_{k,l} - \ell| \geq \epsilon \) and \((k,l) \in I_{r,s} \), \(|x_{k,l} - \ell| < \epsilon \) respectively. Since

\[
\frac{1}{[h_{r,s}]^\alpha} \sum_{(k,l) \in I_{r,s}} f \left(|x_{k,l} - \ell| \right) \geq \frac{1}{[h_{r,s}]^\alpha} f \left(\sum_{(k,l) \in I_{r,s}} |x_{k,l} - \ell| \right) \geq \frac{1}{[h_{r,s}]^\alpha} f \left(\sum_{(k,l) \in I_{r,s}, |x_{k,l} - \ell| \geq \epsilon} |x_{k,l} - \ell| \right) \geq \frac{c}{[h_{r,s}]^\alpha} f \left(\sum_{(k,l) \in I_{r,s}, |x_{k,l} - \ell| \geq \epsilon} \right) \frac{1}{f(h)} f(\epsilon).
\]

Therefore, \(w^{\alpha} \left[\theta'', f \right] - \lim x_{k,l} = \ell \) implies \(S_{\theta''}^{f,\alpha} - \lim x_{k,l} = \ell \). \(\square \)

Theorem 2.4. Let \(\alpha_1, \alpha_2 \) be two real numbers such that \(0 < \alpha_1 \leq \alpha_2 \leq 1 \), \(f \) be an unbounded modulus function and let \(\theta'' = \{(k_r, l_s)\} \) be a double lacunary sequence, then we have \(w^{f,\alpha_2}_{\theta''} (p) \subset S_{\theta''}^{f,\alpha_2} \).

Proof. Let \(x \in w^{f,\alpha_1}_{\theta''} (p) \) and \(\epsilon > 0 \) be given and \(\sum_1, \sum_2 \) denote the sums over \((k,l) \in I_{r,s} \), \(|x_{k,l} - \ell| \geq \epsilon \) and \((k,l) \in I_{r,s} \), \(|x_{k,l} - \ell| < \epsilon \) respectively.
\[f(h_{r,s})^{\alpha_1} \leq f(h_{r,s})^{\alpha_2} \] for each \(r \) and \(s \), we may write

\[
\begin{aligned}
1 \cdot \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k} & = 1 \cdot \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k} + \sum_{2} [f(|x_{k,l} - \ell|)]^{p_k} \\
& \geq 1 \cdot \sum_{(k,l) \in I_{r,s}} [f(\varepsilon)]^{p_k} \\
& \geq H. \cdot [f(h_{r,s})^{\alpha_2}] \cdot \sum_{1} [f(\varepsilon)]^{p_k} \\
& \geq H. \cdot [f(h_{r,s})^{\alpha_2}] \cdot \sum_{1} \min([\varepsilon]^h, [\varepsilon]^H) \\
& \geq c \cdot H. \cdot [f(h_{r,s})^{\alpha_2}] \cdot \sum_{1} \left(\min([\varepsilon]^h, [\varepsilon]^H) \right).
\end{aligned}
\]

Hence \(x \in S_{\theta''}^{I,\alpha_2} \). \(\square \)

Theorem 2.5. Let \(\theta'' = \{(k_r, l_s)\} \) be a double lacunary sequence and \(\alpha \) be a fixed real number such that \(0 < \alpha < 1 \). If \(\liminf_{r} q_r > 1 \), \(\liminf_{s} q_s > 1 \) and \(\lim_{u \to \infty} \frac{f(u)\alpha}{u\alpha} > 0 \), then \(S''^{I,\alpha} \subset S_{\theta''}^{I,\alpha} \).

Proof. Suppose first that \(\liminf_{r} q_r > 1 \) and \(\liminf_{s} q_s > 1 \); then there exists \(a, b > 0 \) such that \(q_r \geq 1 + a \) and \(q_s \geq 1 + b \) for sufficiently large \(r \) and \(s \), which implies that

\[
\frac{h_r}{k_r} \geq \frac{a}{1 + a} \Rightarrow \left(\frac{h_r}{k_r} \right)^\alpha \geq \left(\frac{a}{1 + a} \right)^\alpha
\]

and

\[
\frac{\ell_r}{l_s} \geq \frac{b}{1 + b} \Rightarrow \left(\frac{\ell_r}{l_s} \right)^\alpha \geq \left(\frac{b}{1 + b} \right)^\alpha.
\]

If \(S''^{I,\alpha} - \lim x_{k,l} = \ell \), then for every \(\varepsilon > 0 \) and for sufficiently large \(r \) and \(s \), we
Hence we have
\[
\frac{1}{[f(k_r, l_s)]^\alpha} f (\{ k \leq k_r, l \leq l_s : |x_{k,l} - \ell| \geq \varepsilon \}) \leq \frac{1}{[f(h_r, l_s)]^\alpha} f (\{ k \leq k_r, l \leq l_s : |x_{k,l} - \ell| \geq \varepsilon \}) \geq \frac{1}{[f(h_r, l_s)]^\alpha} \frac{k_r^\alpha} {k_r^\alpha} \frac{h_r^\alpha} {h_r^\alpha} \frac{f (\{ k \leq k_r, l \leq l_s : |x_{k,l} - \ell| \geq \varepsilon \})}{[f(h_r)]^\alpha} \geq \frac{1}{[f(h_r, l_s)]^\alpha} \frac{(k_r/l_s)^\alpha} {f(h_r, l_s)^\alpha} \frac{h_r^\alpha} {h_r^\alpha} \frac{f (\{ k \leq k_r, l \leq l_s : |x_{k,l} - \ell| \geq \varepsilon \})}{[f(h_r)]^\alpha}. \]

This proves the sufficiency. \(\square\)

Theorem 2.6. Let \(f \) be an unbounded modulus, \(\theta = (k_r) \) and \(\theta' = (l_s) \) be two lacunary sequences, \(\theta'' = \{ (k_r, l_s) \} \) be a double lacunary sequence and \(0 < \alpha \leq 1 \). If \(S_{f, \theta}^\alpha - \lim x_k = \ell \) and \(S_{f, \theta'}^\alpha - \lim x_l = \ell \), then \(S_{f, \theta''}^\alpha - \lim x_{k,l} = \ell \).

Proof. Suppose \(S_{f, \theta}^\alpha - \lim x_k = \ell \) and \(S_{f, \theta'}^\alpha - \lim x_l = \ell \). Then for \(\varepsilon > 0 \) we can write
\[
\lim_{r} \frac{1}{[f(h_r)]^\alpha} \{ k \in I_r : |x_k - \ell| \geq \varepsilon \} = 0
\]
and
\[
\lim_{s} \frac{1}{[f(h_s)]^\alpha} \{ l \in I_s : |x_l - \ell| \geq \varepsilon \} = 0.
\]
So we have
\[
\frac{1}{[f(h_r, l_s)]^\alpha} |\{ (k, l) \in I_r, s : |x_{k,l} - \ell| \geq \varepsilon \}| \leq \frac{1}{[c f(h_r)]^\alpha} \{ (k, l) \in I_r, s : |x_{k,l} - \ell| \geq \varepsilon \} \leq \frac{1}{c^\alpha [f(h_r)]^\alpha} \{ (k, l) \in I_r, s : |x_{k,l} - \ell| \geq \varepsilon \} \leq \left[\frac{1}{[f(h_r)]^\alpha} \{ k \in I_r : |x_k - \ell| \geq \varepsilon \} \right] \left[\frac{1}{[f(h_s)]^\alpha} \{ l \in I_s : |x_l - \ell| \geq \varepsilon \} \right].
\]
Hence \(S_{f, \theta''}^\alpha - \lim x_{k,l} = \ell \). \(\square\)
Theorem 2.7. Let f be an unbounded modulus. If $\lim p_k > 0$, then $w_{\theta_0}^{f, \alpha} (p) - \lim x_{k,l} = \ell$ uniquely.

Proof. Let $\lim p_k = s > 0$. Assume that $w_{\theta_0}^{f, \alpha} (p) - \lim x_{k,l} = \ell_1$ and $w_{\theta_0}^{f, \alpha} (p) - \lim x_{k,l} = \ell_2$. Then

$$\lim_{r,s} \frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell_1|)]^{p_k} = 0,$$

and

$$\lim_{r,s} \frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell_2|)]^{p_k} = 0.$$

By definition of f, we have

$$\frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} [f(|\ell_1 - \ell_2|)]^{p_k} \leq \frac{D}{[f(h_{r,s})]^{\alpha}} \left(\sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell_1|)]^{p_k} + \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell_2|)]^{p_k} \right)$$

$$= \frac{D}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell_1|)]^{p_k} + \frac{D}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell_2|)]^{p_k}$$

where $\sup_k p_k = H$ and $D = \max (1, 2^{H-1})$. Hence

$$\lim_{r,s} \frac{1}{[f(h_{r,s})]^{\alpha}} \sum_{(k,l) \in I_{r,s}} [f(|\ell_1 - \ell_2|)]^{p_k} = 0.$$

Since $\lim_{k \to \infty} p_k = s$ we have $\ell_1 - \ell_2 = 0$. Thus the limit is unique. \square

Theorem 2.8. Let $\theta_1' = \{(r_1, l_s)\}$ and $\theta_2' = \{(s_r, t_s)\}$ be two double lacunary sequences such that $I_{r,s} \subset J_{r,s}$ for all $r, s \in \mathbb{N}$ and α_1, α_2 two real numbers such that $0 < \alpha_1 \leq \alpha_2 \leq 1$. If

$$\lim_{r,s \to \infty} \inf \frac{[f(h_{r,s})]^{\alpha_1}}{[f(h_{r,s})]^{\alpha_2}} > 0$$

then $w_{\theta_1'}^{f, \alpha_2} (p) \subset w_{\theta_1'}^{f, \alpha_1} (p)$, where $I_{r,s} = \{(k,l) : k_{r-1} < k \leq k_r \text{ and } l_{s-1} < l \leq l_s\}$, $k_{r,s} = k_{r}l_{s}$, $h_{r,s} = h_{r}h_{s}$ and $J_{r,s} = \{(s,t) : s_{r-1} < s \leq s_r \text{ and } t_{s-1} < t \leq t_s\}$, $s_{r,s} = s_{r}t_{s}$, $\ell_{r,s} = \ell_{r} \ell_{s}$.

\[\text{(2.1)}\]
Proof. Let $x \in w_{\theta_2}^{f,\alpha_2}(p)$. We can write
\[
\frac{1}{[f((r,s))]^{\alpha_2}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k} = \frac{1}{[f((r,s))]^{\alpha_2}} \sum_{(k,l) \in J_{r,s}-I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k} \n
+ \frac{1}{[f((r,s))]^{\alpha_2}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k} \n
\geq \frac{1}{[f((r,s))]^{\alpha_2}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k} \n
\geq \frac{[f((h_{r,s})]^{\alpha_1}}{[f((r,s))]^{\alpha_2}} \frac{1}{[f((h_{r,s})]^{\alpha_1}} \sum_{(k,l) \in I_{r,s}} [f(|x_{k,l} - \ell|)]^{p_k}.
\]
Thus if $x \in w_{\theta_2}^{f,\alpha_2}(p)$, then $x \in w_{\theta_1}^{f,\alpha_1}(p)$.

From Theorem 2.8, we have the following results.

Corollary 2.1. Let $\theta''_1 = \{(k_r,l_s)\}$ and $\theta''_2 = \{(s_r,t_s)\}$ be two double lacunary sequences such that $I_{r,s} \subset J_{r,s}$ for all $r, s \in \mathbb{N}$ and α_1, α_2 two real numbers such that $0 < \alpha_1 \leq \alpha_2 \leq 1$. If (2.1) holds then
\begin{itemize}
 \item[(i)] $w_{\theta_2}^{f,\alpha}(p) \subset w_{\theta_1}^{f,\alpha}(p)$, if $\alpha_1 = \alpha_2 = \alpha$,
 \item[(ii)] $w_{\theta_2}^{f,\alpha}(p) \subset w_{\theta_1}^{f,\alpha_1}(p)$, if $\alpha_2 = 1$,
 \item[(iii)] $w_{\theta_2}^{f}(p) \subset w_{\theta_1}^{f}(p)$, if $\alpha_1 = \alpha_2 = 1$.
\end{itemize}

REFERENCES

Hacer Şengül
Faculty of Education
Harran University
Osmanbey Campus
63190 Şanlıurfa, Turkey
hacer.sengul@hotmail.com

Mikail Et
Department of Mathematics
Fırat University
23119 Elazığ, Turkey
mikail68@gmail.com

Yavuz Altin
Department of Mathematics
Fırat University
23119 Elazığ, Turkey
yaltin23@yahoo.com