THE ANALYTIC SOLUTION OF INITIAL BOUNDARY VALUE PROBLEM INCLUDING TIME FRACTIONAL DIFFUSION EQUATION

Süleyman Çetinkaya, Ali Demir and Hülya Kodal Sevindir

Abstract. The motivation of this study is to determine the analytic solution of initial boundary value problem including time fractional differential equation with Neumann boundary conditions in one dimension. By making use of separation of variables, the solution is constructed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem.

Keywords: Caputo fractional derivative, space-fractional diffusion equation, Mittag-Leffler function, initial-boundary-value problems, spectral method.

1. Introduction

As PDEs of fractional order play an important role in modelling numerous processes and systems in various scientific research areas such as applied mathematics, physics chemistry etc., the interest in this topic has become enormous. Since the fractional derivative is non-local, the model with fractional derivative for physical problems turns out to be the best choice to analyze the behaviour of the complex non linear processes. That is why this has attracted an increasing number of researchers. The derivatives in the sense of Caputo is one of the most common since modelling of physical processes with fractional differential equations including Caputo derivative is much better than other models. In literature, increasing number of studies can be found supporting this conclusion [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15], [16], [17]. Especially there are various studies on fractional diffusion equations: Exact analytical solutions of heat equations are obtained by using operational method [18]. The existence, uniqueness and regularity of solution of impulsive sub-diffusion equation are established by means of eigenfunction expansion [19]. The anomalous diffusion models with non-singular power-law kernel have been investigated and constructed [20]. Moreover, the Caputo derivative of constant is zero which is not hold by many fractional derivatives. The solutions of fractional PDEs and ODEs are determined in terms of Mittag-Leffler function.
2. Preliminary Results

In this section, we recall fundamental definition and well known results about fractional derivative in Caputo sense.

Definition 2.1. The q^{th} order fractional derivative of $u(t)$ in Caputo sense is defined as

$$D^q u(t) = \frac{1}{\Gamma(n-q)} \int_{t_0}^{t} (t-s)^{n-q-1} u^{(n)}(s) ds, t \in [t_0, t_0 + T]$$ (2.1)

where $u^{(n)}(t) = \frac{d^n u}{dt^n}$, $n-1 < q < n$. Note that Caputo fractional derivative is equal to integer order derivative when the order of the derivative is integer.

Definition 2.2. The q^{th} order Caputo fractional derivative for $0 < q < 1$ is defined as

$$D^q u(t) = \frac{1}{\Gamma(1-q)} \int_{t_0}^{t} (t-s)^{-q} u'(s) ds, t \in [t_0, t_0 + T]$$ (2.2)

The two-parameter Mittag–Leffler function which is taken into account in eigenvalue problem, is given by

$$E_{\alpha,\beta} (\lambda(t-t_0)^\alpha) = \sum_{k=0}^\infty \frac{(\lambda(t-t_0)^\alpha)^k}{\Gamma(ak+\beta)}, \alpha, \beta > 0$$ (2.3)

including constant λ. Especially, for $t_0 = 0$, $\alpha = \beta = q$ we have

$$E_{\alpha,\beta} (\lambda^\alpha) = \sum_{k=0}^\infty \frac{\lambda^k}{\Gamma(qk+q)}, q > 0$$ (2.4)

Mittag–Leffler function coincides with exponential function i.e., $E_{1,1} (\lambda t) = e^{\lambda t}$ for $q = 1$. For details see [13, 21].

We determined the solution of following time fractional differential equation with Neumann boundary and initial conditions in this study:

$$D^\alpha_t u(x,t; \alpha) = u_{xx}(x,t; \alpha) - \gamma u(x,t; \alpha),$$ (2.5)

$$u_x(0,t) = u_x(l,t) = 0,$$ (2.6)

$$u(x,0) = f(x)$$ (2.7)

where $0 < \alpha < 1$, $0 \leq x \leq l$, $0 \leq t \leq T$, $\gamma \in \mathbb{R}$.
3. Main Results

By means of separation of variables method, the solution to the problem (2.5)-(2.7) is constructed in analytical form. Thus, a solution to the problem (2.5)-(2.7) has the following form:

\[(3.1) \quad u(x,t;\alpha) = X(x)T(t;\alpha)\]

where \(0 \leq x \leq l, \ 0 \leq t \leq T\).

Plugging (3.1) into (2.5) and arranging it, we have

\[(3.2) \quad \frac{D^{\alpha}_{t} (T(t;\alpha))}{T(t;\alpha)} + \gamma \frac{X''(x)}{X(x)} = -\lambda^2\]

The equation (3.2) produces a fractional differential equation with respect to time and an ordinary differential equation with respect to space. The first ordinary differential equation is obtained by taking the equation on the right hand side of Eq. (3.2). Hence, with boundary conditions (2.6), we have the following problem:

\[(3.3) \quad X''(x) + \lambda^2 X(x) = 0\]

\[(3.4) \quad X'(0) = X'(l) = 0\]

The solution of eigenvalue problem (3.3)-(3.4) is accomplished by making use of the exponential function of the following form:

\[(3.5) \quad X(x) = e^{rx}\]

Hence, the characteristic equation is computed in the following form:

\[(3.6) \quad r^2 + \lambda^2 = 0\]

Case 1. If \(\lambda = 0\), the Eq.(3.6) has two coincident roots \(r_1 = r_2\), leading to the general solution of the eigenvalue problem (3.3)-(3.4) having the following form:

\[(3.7) \quad X(x) = k_1 x + k_2\]

\[(3.8) \quad X'(x) = k_1\]

The first boundary condition yields

\[(3.9) \quad X'(0) = k_1 = 0 \Rightarrow k_1 = 0\]

This result leads to
Similarly, the second boundary condition leads to

\[X'(l) = k_1 = 0 \Rightarrow k_1 = 0 \]

Hence, we obtain the solution as follows:

\[X_0(x) = k_2 \]

Case 2. If \(\lambda < 0 \), the Eq.(3.6) has distinct real roots \(r_1, r_2 \) leading to the general solution of the eigenvalue problem (3.3)-(3.4) and having the following form:

\[X(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} \]

\[X'(x) = r_1 c_1 e^{r_1 x} + r_2 c_2 e^{r_2 x} \]

The first boundary condition yields

\[X'(0) = r_1 c_1 + r_2 c_2 = 0 \Rightarrow c_1 = -\frac{r_2}{r_1} c_2 \]

This result leads to

\[X(x) = -\frac{r_2}{r_1} c_2 e^{r_1 x} + c_2 e^{r_2 x} \]

Similarly, the last boundary condition leads to

\[X(l) = -\frac{r_2}{r_1} c_2 e^{r_1 l} + c_2 e^{r_2 l} = 0 \Rightarrow c_2 = 0 \]

which implies that \(c_1 = 0 \). Therefore, \(X(x) = 0 \) which means that we don’t have any solution for \(\lambda < 0 \).

Case 3. If \(\lambda > 0 \), the Eq.(3.6) has two complex conjugate roots lead to the general solution of the eigenvalue problem (3.3)-(3.4) and have the following form:

\[X(x) = c_1 \cos(\lambda x) + c_2 \sin(\lambda x) \]

\[X'(x) = -c_1 \lambda \sin(\lambda x) + c_2 \lambda \cos(\lambda x) \]

The first boundary condition yields

\[X'(0) = 0 = c_2 \lambda \Rightarrow c_2 = 0 \]
This result leads to

\[(3.21) \quad X (x) = c_1 \cos (\lambda x)\]

Similarly, the last boundary condition leads to

\[(3.22) \quad X'(l) = -c_1 \lambda \sin (\lambda l) = 0\]

which implies that

\[(3.23) \quad \sin (\lambda l) = 0\]

Let \(n\pi = \lambda_n l\). Hence, the eigenvalues can be determined as follows:

\[(3.24) \quad \lambda_n = \frac{n\pi}{l}, \lambda_1 < \lambda_2 < \lambda_3 < \ldots\]

The representation of the solution is obtained as follows:

\[(3.25) \quad X_n (x) = \cos \left(\frac{n\pi x}{l} \right), n = 1, 2, 3, \ldots\]

The second equation in \((3.2)\) for every eigenvalue \(\lambda_n\) is determined as follows:

\[(3.26) \quad \frac{D^\alpha (T (t; \alpha))}{T (t; \alpha)} = - (\lambda^2 + \gamma)\]

which yields the following solution

\[(3.27) \quad T_n (t; \alpha) = E_{\alpha,1} \left(- \left(\frac{(n\pi x)^2}{l} + \gamma \right) t^\alpha \right) n = 1, 2, 3, \ldots\]

The solution for every eigenvalue \(\lambda_n\) is constructed as follows:

\[(3.28) \quad u_n (x, t; \alpha) = X_n (x) T_n (t; \alpha) = E_{\alpha,1} \left(- \left(\frac{(n\pi x)^2}{l} + \gamma \right) t^\alpha \right) \cos \left(\frac{n\pi x}{l} \right), n = 0, 1, 2, 3, \ldots\]

Hence the general solution becomes

\[(3.29) \quad u (x, t; \alpha) = d_0 + \sum_{n=1}^{\infty} d_n \cos \left(\frac{n\pi x}{l} \right) E_{\alpha,1} \left(- \left(\frac{(n\pi x)^2}{l} + \gamma \right) t^\alpha \right)\]

Note that boundary conditions and fractional differential equation are satisfied by this solution. The coefficients in \((3.29)\) are obtained by making use of initial condition \((2.7)\):
\(u(x, 0) = f(x) = d_0 + \sum_{n=1}^{\infty} d_n \cos\left(\frac{n\pi x}{l}\right) \)

\[
\left\langle f(x), \cos\left(\frac{k\pi x}{l}\right) \right\rangle = \left\langle d_0, \cos\left(\frac{k\pi x}{l}\right) \right\rangle + \sum_{n=1}^{\infty} d_n \left\langle \cos\left(\frac{n\pi x}{l}\right), \cos\left(\frac{k\pi x}{l}\right) \right\rangle
\]

(3.31)

We obtain the coefficients \(d_n \) for \(n = 0, 1, 2, 3, \ldots \) as follows:

\[
d_0 = \frac{1}{l} \int_0^l f(x) \, dx
\]

(3.32)

\[
d_n = \frac{2}{l} \int_0^l \cos\left(\frac{n\pi x}{l}\right) f(x) \, dx
\]

(3.33)

4. Illustrative Example

In this part, we first take the following partial differential equation with Neumann boundary and initial conditions:

\[
u_t(x, t) = u_{xx}(x, t) - u(x, t), \quad 0 \leq x \leq 1, 0 \leq t \leq T
\]

\[
u_x(0, t) = 0, \quad u_x(1, t) = 0, \quad 0 \leq t \leq T
\]

(4.1)

which has the solution in the following form:

\[
u(x, 0) = \cos(\pi x), \quad 0 \leq x \leq 1
\]

(4.2)

Secondly, we take the following time fractional differential equation with Neumann boundary and initial conditions:

\[
D^\alpha_t u(x, t) = u_{xx}(x, t) - u(x, t), \quad 0 < \alpha < 1, \quad 0 \leq x \leq 1, \quad 0 \leq t \leq T
\]

(4.3)

\[
u_x(0, t) = u_x(1, t) = 0, \quad 0 \leq t \leq T
\]

(4.4)

\[
u(x, 0) = \cos(\pi x), \quad 0 \leq x \leq 1
\]

(4.5)

The application of separation of variables method yields the following equation:
The Analytic Solution of Time Fractional Diffusion Equation

\[\frac{D_\alpha^\alpha T(t;\alpha)}{T(t;\alpha)} + 1 = \frac{X''(x)}{X(x)} = -\lambda^2 \]

(4.6)

The equation (4.6) produces a fractional differential equation with respect to time and a differential equation with respect to space. The first fractional differential equation is obtained by taking the equation on the right hand side of Eq. (4.6). Hence, with boundary conditions (4.4), we have the following problem:

\[X''(x) + \lambda^2 X(x) = 0 \]

(4.7)

\[X'(0) = 0, \quad X'(1) = 0 \]

(4.8)

Hence the eigenvalue problem (4.7)-(4.8) yields the following solution:

\[X_n(x) = \cos(n\pi x), n = 1, 2, 3, \ldots \]

(4.9)

By using the similar calculations as in (3.27), \(T_n(t;\alpha) \) for \(n = 1, 2, 3, \ldots \) is determined in the following form:

\[T_n(t;\alpha) = E_{\alpha,1} \left(- \left((n\pi)^2 + 1 \right) t^\alpha \right) n = 1, 2, 3, \ldots \]

(4.10)

For each eigenvalue \(\lambda_n \), we obtain the following solution:

\[u_n(x,t;\alpha) = X_n(x) T_n(t;\alpha) = E_{\alpha,1} \left(- \left((n\pi)^2 + 1 \right) t^\alpha \right) \cos(n\pi x) \]

(4.11)

Hence, the general solution is established as follows:

\[u(x,t;\alpha) = d_0 + \sum_{n=1}^{\infty} d_n \cos(n\pi x) \]

(4.12)

Note that the general solution (4.12) satisfies both boundary conditions (4.4) and the fractional equation (4.3). We determine the coefficients \(d_n \) in such a way that the general solution (4.12) satisfies the initial condition (4.5). Plugging \(t = 0 \) in to the general solution (4.12) and making equal to the initial condition (4.5), we have

\[u(x,0) = d_0 + \sum_{n=1}^{\infty} d_n \cos(n\pi x) \]

(4.13)

Via the inner product we obtain the coefficients \(d_n \) for \(n = 0, 1, 2, 3, \ldots \) as follows:

\[d_0 = \frac{1}{\pi} \int_{0}^{1} f(x) dx = \int_{0}^{1} \cos(\pi x) \]

(4.14)
Thus \(d_n = 0 \) for \(n \neq 1 \).

For \(n = 1 \) we get

\[
(4.16) \quad d_1 = 2 \int_0^1 \cos^2(\pi x) \, dx = 2 \left[\frac{x}{2} + \frac{1}{4\pi} \sin(2\pi x) \right] \bigg|_{x=0}^{x=1} = 1
\]

Thus

\[
(4.17) \quad u(x, t; \alpha) = \cos(\pi x) \, E_{\alpha,1} \left(-\left(\pi^2 + 1 \right) t^\alpha \right)
\]

It is important to note that plugging \(\alpha = 1 \) in to the solution (4.17) gives the solution (4.2) which confirm the accuracy of the method we apply.

5. Conclusion

In this research, the analytic solution of initial boundary value problem with Neumann boundary conditions in one dimension has been constructed. By using the separation of variables, the solution is formed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem.

REFERENCES

Süleyman Çetinkaya
Faculty of Arts and Sciences
Department of Mathematics
41380 Kocaeli, Turkey
suleyman.cetinkaya@kocaeli.edu.tr

Ali Demir
Faculty of Arts and Sciences
Department of Mathematics
41380 Kocaeli, Turkey
ademir@kocaeli.edu.tr

Hülya Kodal Sevindir
Faculty of Arts and Sciences
Department of Mathematics
41380 Kocaeli, Turkey
hkodal@kocaeli.edu.tr