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Abstract. Recently, Sahin [10] studied the anti-invariant Riemannian submersions from
almost Hermitian manifolds onto Riemannian manifolds. In present work, these notions
of anti-invariant and Lagrangian Riemannian submersions have been extended to lo-
cally conformal Kaehler manifolds. Certain decomposition results and the geometry of
foliation have also been investigated.
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1. Introduction

Locally conformal Kaehler manifolds (shortly, l.c.K. manifolds) have been rich
source of attraction for many years. Many geometers considered these manifolds and
their submanifolds in different settings (for details see, [3] and [13]). On the other
side, for any Riemannian manifold M and Riemannian manifold B, the Riemannian
submersion π from M onto B was studied for very first time by B. O’Neil [6]. Gray
[4], Ianus [5], Park ([7], [8]), Sahin ([11], [12]), Choudhary [2] etc. have also taken
into consideration the geometry of Riemannian submersions for different structures
on differentiable manifolds. Recently, anti-invariant Riemannian submersions have
been taken into study from almost Hermitian manifolds onto Riemannian manifolds
by B. Sahin [10].

In present work, these notions of anti-invariant and Lagrangian Riemannian
submersions have been extended to locally conformal Kaehler manifolds. Certain
decomposition results and the geometry of foliation have also been investigated.

Received November 04, 2019; accepted October 18, 2020
2020 Mathematics Subject Classification. Primary 53C15; Secondary 53B20, 53C43

∗The first author was supported by DST, Govt. of India, through Inspire Fellowship No.
DST/INSPIRE Fellowship/2009/[xxv].

1031



1032 M. A. Choudhary and L. S. Alqahtani

2. Preliminaries

This section is preliminary in nature wherein we collect definitions and formulas
that are to be used. We start with l.c.K. manifold.

Definition 2.1. [3] For Hermitian manifold (M̃, g) of dimension-2m and Kaehler
2-form Ω holding for the relation

Ω(X ,Y) = g(X , JY),

for all X ,Y ∈ χ(M̃) and closed 1-form ω defined globally on manifold M̃ such that

dΩ = ω ∧ Ω,

the manifold M̃ is known as locally conformal Kaehler manifold.

Here, ω is sign of the Lee form of M̃. We have the following cases for ω:

• when ω is exact, M̃ is globally conformal Kahler (g.c.K.) manifold,

• when ω = 0, M̃ is Kaehler manifold.

One can observe that any l.c.K. manifold becomes g.c.K. manifold provided it is
simply connected. Let us use ♯ to represent the rising of the indices in association
with the metric g, then for any l.c.K. manifold M̃, B1 = ω♯ indicates the Lee vector
field and satisfies

g(X , B1) = ω(X ); ∀X ∈ χ(M̃).

[3] When we use θ = ωoJ for anti-Lee form and A = −JB1 for anti-Lee vector field,
respectively. Then

(∇̃XJ)Y =
1

2
{θ(Y)X − ω(Y)JX − g(X ,Y)A − Ω(X ,Y)B1},(2.1)

∀X ,Y ∈ χ(M̃), where, ∇̃ is used for the Levi Civita connection of (M̃, g).

Any map π ofm-dimensional Riemannian manifold (Mm, g) onto a b′-dimensional
Riemannian manifold (Bb′ , gB) with m > b′ stands for a Riemannian submersion if π
has maximal rank and the lengths of horizontal vectors are preserved by differential
π∗.

It is known that π−1(q′), q′ ∈ B is an (m − b′) dimensional submanifold of
Riemannian manifold M and named as fibers. A vector field on M is said to be

• vertical provided it is always tangent to π−1(q′);

• horizontal provided it is always orthogonal to π−1(q′).

Next, we have
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Definition 2.2. [10] Let X represents a vector field on a Riemannian manifold
M, then X is known as basic if

• it is horizontal

• it is π-related to a vector field X∗ on B, that is, π∗Xp1
= X∗π(p1), ∀p1 ∈ M.

Let us use V and H to denote the projection morphisms on kerπ∗ and (kerπ∗)
⊥,

respectively. Then

Lemma 2.1. [6] When π : M → B represents a Riemannian submersion from a
Riemannian manifold M onto a Riemannian manifold B. Then

(a) g(X ,Y) = gB(X∗,Y∗)oπ,

(b) H[X ,Y] of [X ,Y] is basic vector field corresponding to [X∗,Y∗], i.e., ([X ,Y]H) =
(X∗,Y∗),

(c) when V is vertical vector, [V,X ] is also vertical,

(d) when ∇∗ be the Levi-Civita connection on B, H(∇XY) will be the basic vector
field that corresponds to ∇∗

X∗
Y∗.

Here, X ,Y are considered as basic vector fields on M.

[6] Let us denote by the symbols T and A, O’Neills tensors for vector fields E,F

on M and by ∇ the Levi-Civita connection of g such that the following hold

AEF = H∇HEVF + V∇HEHF(2.2)

TEF = H∇VEVF + V∇VEHF.(2.3)

The necessary and sufficient condition for Riemannian submersion π : M → B to
be totally geodesic fibres is that T vanishes identically. Now, let us suppose that
Γ(TM) denotes the set of all sections on the tangent bundle TM, then for any E ∈
Γ(TM), TE and AE represent skew-symmetric operators on (Γ(TM), g) reversing
the horizontal and vertical distributions. One can observe that T is vertical, TE =
TVE and A is horizontal, A = AHE and hold for the following ([6], [10])

TUW = TWU , ∀U ,W ∈ Γ(kerπ∗)(2.4)

AXY = −AYX =
1

2
V [X ,Y], ∀X ,Y ∈ (Γ(kerπ∗)

⊥).(2.5)

Now we state the following lemma [10]
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Lemma 2.2. When X ,Y ∈ Γ((kerπ∗)
⊥) and W ,W ′ ∈ Γ(kerπ∗), we have the

following relations:

(a) ∇WW ′ = TWW ′ + ∇̂WW ′

(b) ∇WX = H∇WX + TWX

(c) ∇XW = AXW + V∇XW

(d) ∇XY = H∇XY +AXY

where ∇̂WW ′ = V∇WW ′. Moreover, H∇WX = AXW, when X is basic.

3. Anti-invariant and Lagrangian Riemannian submersions

This section deals with the anti-invariant and Lagrangian Riemannian submer-
sion. Certain conditions to show these submersions to be totally geodesic maps are
also discussed. A diffeomorphism f of Riemannian manifold (M, g) onto another
Riemannian manifold (B, g′) is said be geodesic map if image of any geodesic arc in
M under f is a geodesic arc in B and image of any geodesic arc in B under f−1 is
a geodesic arc in M. A map is said to be totally geodesic if its hessian vanishes.

Now, recall anti-invariant Riemannian submersion by the following way.

Definition 3.1. [10] Let (M, gM, J) represents a complex almost Hermitian man-
ifold of dimension m and (B, gB) be a Riemannian manifold. Then, any Rieman-
nian submersion π : M → B is said to be anti-invariant Riemannian submersion if
J(kerπ∗) ⊆ (kerπ∗)

⊥.

For an anti-invariant Riemannian submersion π from an almost Hermitian man-
ifold (M, gM, J) onto a Riemannian manifold (B, gB), above definition implies
J(kerπ∗)

⊥ ∩ (kerπ∗) 6= 0, and that produces

(kerπ∗)
⊥ = J(kerπ∗)⊕ µ,(3.1)

here µ is used for the orthogonal complementary distribution to J(kerπ∗) in (kerπ∗)
⊥.

So,

JX = BX + CX , X ∈ Γ((kerπ∗)
⊥), BX ∈ Γ(kerπ∗), CX ∈ Γ(µ).(3.2)

For Riemannian submersion π, (3.2) and π∗((kerπ∗)
⊥) = TB indicate

gB(π∗JV, π∗CX ) = 0, ∀X ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗),

implying

TB = π∗(J(kerπ∗))⊕ π∗(µ).(3.3)
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[1] Let φ
′

: M → B be smooth map from Riemannian manifold (M, gM) onto
(B, gB). Then, any section of the bundle Hom(TM, φ

′
−1(TB)) → M can be thought

by differential φ
′

∗, φ
′
−1(TB) being the pullback bundle having fibres (φ

′
−1(TB))p =

Tφ
′(p)B, p ∈ M. Thanks to pullback connection and the Levi-Civita connection

∇M, one can induce a connection ∇ for Hom(TM, φ
′
−1(TB)). Hence, define the

second fundamental form of φ
′

by

(∇φ
′

∗)(X ,Y) = ∇φ
′

X φ
′

∗(Y)− φ
′

∗(∇
M
X Y), ∀X ,Y ∈ Γ(TM),(3.4)

here, Γ(TM) represents set of all sections on the tangent bundle TM and ∇φ
′

is
the pullback connection.

Next, we give the following result.

Lemma 3.1. When π : M → B represents anti-invariant Riemannian submersion
from l.c.K. manifold (M, g, J) to a Riemannian manifold (B, gB), and ω be closed
1-form defined globally on M, then for all X ,Y ∈ Γ((kerπ∗)

⊥),W ∈ Γ(kerπ∗), we
have

(i) g(CY, JW) = 0

(ii) g(∇XCY, JW) = −g(CY, JAXW) + 1
2ω(W)g(CY, CX )

(iii) g(∇WBY, CX ) = g(CX , TWBY) = −g(BY, TWCX ).

Proof (i) Let Y ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗), then in the light of (3.2),

we get

g(CY, JW) = g(JY −BY, JW)

= g(JY, JW)

where the fact BY ∈ Γ(kerπ∗) and JW ∈ Γ((kerπ∗)
⊥) was used. Moreover,

g(JY, JW) = g(Y,W) = 0 and this completes the proof.

(ii) Let us assume B1 ∈ Γ(kerπ∗), then taking view of (2.1) and part (i), we get

g(∇XCY, JW) = −g(CY,∇XJW)

= −g(CY, J∇XW) +
1

2
ω(W)g(CY, JX )

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗). Thanks to (3.2), we arrive

g(∇XCY, JW) = −g(CY, J∇XW) +
1

2
ω(W)g(CY, BX + CX )

= −g(CY, J∇XW) +
1

2
ω(W)g(CY, CX )

because CY ∈ Γ(µ) and BX ∈ Γ(kerπ∗). Taking use of Lemma 2.2 produces

g(∇XCY, JW) = −g(CY, JAXW)− (CY, JV∇XW) +
1

2
ω(W)g(CY, CX )
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that simplifies to

g(∇XCY, JW) = −g(CY, JAXW) +
1

2
ω(W)g(CY, CX ),

here, we used JV∇XW ∈ Γ(Jkerπ∗). ✷

From here, we assume that B1 ∈ (kerπ∗). We also assume horizontal vector
fields to be basic whenever needed in the proofs. Now, let us move to study the
integrability results of the horizontal distribution (kerπ∗)

⊥. Also, note that kerπ∗

is integrable.

Theorem 3.1. When π : M → B represents anti-invariant Riemannian submer-
sion from l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB), then the
following are equivalent:

(a) (kerπ∗)
⊥ is integrable

(b) gB((∇π∗)(Y, BX ), π∗JW) = gB((∇π∗)(X , BY), π∗JW) + g(CY, JAXW)
− g(CX , JAYW)− 1

2g(BY, B1)g(X , JW)
+ 1

2g(BX , B1)g(Y, JW)

(c) g(AYBX −AXBY, JW) = −g(CY, JAXW) + g(CX , JAYW)
+ 1

2g(BY, B1)g(X , JW)− 1
2g(BX , B1)g(Y, JW)

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗).

Proof. Taking account of definition 3.1, we see JY ∈ Γ(kerπ∗ ⊕ µ) and JW ∈
Γ((kerπ∗)

⊥) and hence with the help of (2.1) for X ∈ Γ((kerπ∗)
⊥), we reach at

g([X ,Y],W) = g(J [X ,Y], JW)

= g(J∇XY, JW)− g(J∇YX , JW)

= g(∇XJY, JW)−
1

2
θ(Y)g(X , JW)

−g(∇YJX , JW) +
1

2
θ(X )g(Y, JW),

∀Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗). Here θ = ωoJ , Ω(X ,Y) = g(X , JY) and

g(X , B1) = ω(X ), then B1 ∈ Γ(kerπ∗) and (3.2) produce

g([X ,Y],W) = g(∇XJY, JW)− g(∇YJX , JW)−
1

2
g(BY, B1)g(X , JW)

+
1

2
g(BX , B1)g(Y, JW)

= g(∇XBY, JW) + g(∇XCY, JW)− g(∇YBX , JW)

−g(∇YCX , JW)−
1

2
g(BY, B1)g(X , JW) +

1

2
g(BX , B1)g(Y, JW).
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Because π represents a Riemannian submersion, we conclude

g([X ,Y],W) = g(π∗∇XBY, π∗JW) + g(∇XCY, JW)− gB(π∗∇YBX , π∗JW)

−g(∇YCX , JW)−
1

2
g(BY, B1)g(X , JW) +

1

2
g(BX , B1)g(Y, JW).

Taking into account Lemma 3.1, we arrive at

g([X ,Y],W) = gB(−(∇π∗)(X , BY) + (∇π∗)(Y, BX ), π∗JW)

−g(CY, JAXW) + g(CX , JAYW)

−
1

2
g(BY, B1)g(X , JW) +

1

2
g(BX , B1)g(Y, JW)

proving (a)⇔(b).

Next, taking into consideration Lemma 2.2, we derive

(∇π∗)(X , BY) − (∇π∗)(Y, BX )

= −π∗(∇XBY) + π∗(∇YBX )

= −π∗(∇XBY −∇YBX )

= π∗(AYBX −AXBY),

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗). Simplification reduces to

gB((∇π∗)(X , BY) − (∇π∗)(Y, BX ), π∗JW)

= gB(π∗(AYBX −AXBY), π∗JW)

= g(AYBX −AXBY, JW),

moreover, AXBY −AYBX ∈ Γ((kerπ∗)
⊥), it establishes (b)⇔(c). ✷

Definition 3.2. [10] Let π represents an anti-invariant Riemannian submersion
such that J(kerπ∗) = (kerπ∗)

⊥. Then, π is known as Lagrangian Riemannian sub-
mersion. Moreover, when µ 6= {0}, π is called as proper anti-invariant Riemannian
submersion.

Thanks to Theorem 3.1, we write the following.

Corollary 3.1. When π : M → B represents a Lagrangian Riemannian submer-
sion from l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB), then the
following are equivalent:

(a) (kerπ∗)
⊥ is integrable

(b) (∇π∗)(X , JY) = (∇π∗)(Y, JX ) − 1
2g(BY, B1)X + 1

2g(BX , B1)Y

(c) π∗(AXJY −AYJX ) = 1
2g(BY, B1)X − 1

2g(BX , B1)Y, ∀X ,Y ∈ Γ((kerπ∗)
⊥).
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Proof. Let us assume that X ,Y ∈ Γ((kerπ∗)
⊥) and W ∈ Γ(kerπ∗). Then,

JX ∈ Γ(kerπ∗) and JW ∈ Γ((kerπ∗)
⊥). Hence, taking into light (2.1), we derive

g([X ,Y],W) = g(J [X ,Y], JW)

= g(J∇XY, JW)− g(J∇YX , JW)

= g(∇XJY, JW)− g(∇YJX , JW)

−
1

2
g(BY, B1)g(X , JW) +

1

2
g(BX , B1)g(Y, JW).

Use of (3.4) produces

g([X ,Y],W) = gB(π∗∇XJY, π∗JW)− gB(π∗∇YJX , π∗JW)

−
1

2
g(BY, B1)g(X , JW) +

1

2
g(BX , B1)g(Y, JW)

= −gB((∇π∗)(X , JY), π∗JW) + gB((∇π∗)(Y, JX ), π∗JW)

−
1

2
g(BY, B1)g(X , JW) +

1

2
g(BX , B1)g(Y, JW)

thus, (kerπ∗)
⊥ is integrable iff

gB((∇π∗)(X , JY), π∗JW) = gB((∇π∗)(Y, JX ), π∗JW)−
1

2
g(BY, B1)g(X , JW)

+
1

2
g(BX , B1)g(Y, JW)

establishing (a)⇔(b).

Next, with the help of (3.4) we get

(∇π∗)(Y, JX ) − (∇π∗)(X , JY)

= −π∗(∇YJX ) + π∗(∇XJY)

= π∗(H(∇XJY)−H(∇YJX ))

= π∗(AXJY −AYJX ),

∀X ,Y ∈ Γ((kerπ∗)
⊥). This concludes (b)⇔(c). ✷

4. Geometry of leaves

The geometry of leaves of (kerπ∗) and (kerπ∗)
⊥ of anti-invariant and Lagrangian

Riemannian submersions are studies here. We have

Theorem 4.1. When π : M → B represents an anti-invariant Riemannian sub-
mersion from l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB), then
the following are equivalent:

(a) totally geodesic foliation on M is defined by (kerπ∗)
⊥
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(b) g(AXBY, JW) = g(CY, JAXW)− 1
2ω(W)g(CY, CX )

+ 1
2g(BY, B1)g(X , JW) + 1

2g(X ,Y)g(B1,W)

(c) gB((∇π∗)(X , JY), π∗JW) = −g(CY, JAXW) + 1
2ω(W)g(CY, CX )

− 1
2g(BY, B1)g(X , JW)− 1

2g(X ,Y)g(B1,W)

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗).

Proof. Taking into account (2.1), (3.2), Lemma 2.2 and Lemma 3.1, we write
the following

g(∇XY,W) = g(J∇XY, JW)

= g(∇XJY, JW)−
1

2
g(BY, B1)g(X , JW)−

1

2
g(X ,Y)g(B1,W)

= g(∇XBY, JW) + g(∇XCY, JW) −
1

2
g(BY, B1)g(X , JW)

−
1

2
g(X ,Y)g(B1,W)

= g(AXBY, JW)− g(CY, JAXW) +
1

2
ω(W)g(CY, CX )

−
1

2
g(BY, B1)g(X , JW)−

1

2
g(X ,Y)g(B1,W)

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗). In this way, a totally geodesic foliation on M

is defined by (kerπ∗)
⊥ iff

g(AXBY, JW) = g(CY, JAXW)−
1

2
ω(W)g(CY, CX )

+
1

2
g(BY, B1)g(X , JW) +

1

2
g(X ,Y)g(B1,W)

concluding (a)⇔(b). Next, with the help of (3.4), we derive

g(AXBY, JW) = g(∇XBY, JW)

= g(∇XJY, JW)− g(∇XCY, JW)

= gB(π∗∇XJY, π∗JW)− g(∇XCY, JW)

= −gB((∇π∗)(X , JY), π∗JW) + gB(∇
π
Xπ∗(JY), π∗JW)

−g(∇XCY, JW)

= −gB((∇π∗)(X , JY), π∗JW) + g(∇XCY, JW)− g(∇XCY, JW)

= −gB((∇π∗)(X , JY), π∗JW)

proving (b)⇔(c). ✷

For Lagrangian Riemannian submersion, we have the following corollary.

Corollary 4.1. When π denotes a Lagrangian Riemannian submersion from l.c.K.
manifold (M, g, J) onto a Riemannian manifold (B, gB), then the following are
equivalent:
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(a) totally geodesic foliation is defined by (kerπ∗)
⊥ on manifold M

(b) gB(AXJY, JW) = 1
2g(JY, B1)g(X , JW) + 1

2g(X ,Y)g(B1,W)

(c) gB((∇π∗)(X , JY), π∗JW) = − 1
2g(JY, B1)g(X , JW)− 1

2g(X ,Y)g(B1,W)

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗).

Proof. Thanks to (2.1), we write

g(∇XY,W) = g(J∇XY, JW)

= g(∇XJY, JW)−
1

2
θ(Y)g(X , JW) −

1

2
g(X ,Y)g(B1,W)

= gB(π∗∇XJY, π∗JW)−
1

2
θ(Y)g(X , JW)−

1

2
g(X ,Y)g(B1,W)

= gB(π∗(AXJY), π∗JW)−
1

2
θ(Y)g(X , JW) −

1

2
g(X ,Y)g(B1,W),

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗). This way, a totally geodesic foliation is

defined by (kerπ∗)
⊥ on the manifold M iff

gB(AXJY, JW) =
1

2
θ(Y)g(X , JW) +

1

2
g(X ,Y)g(B1,W).

Therefore, (a)⇔(b). Next, taking help of (3.4) it follows

gB(AXJY, JW) = gB(∇XJY, JW)

= gB(π∗∇XJY, π∗JW)

= −gB((∇π∗)(X , JY), π∗JW)

establishing

gB((∇π∗)(X , JY), π∗JW) = −
1

2
θ(Y)g(X , JW) −

1

2
g(X ,Y)g(B1,W)

and that proves (b)⇔(c). ✷

Now, taking into consideration (3.4) to get

(∇π∗)(W ,X ) = ∇π
Wπ∗X − π∗∇WX , X ∈ Γ(µ),W ∈ Γ(kerπ∗).

Also,

(∇π∗)(X ,W) = ∇π
Xπ∗W − π∗∇XW .

We use above two equations and symmetric property of second fundamental form
to get

∇π
Wπ∗X = 0.(4.1)

Next, we state the following Theorem.
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Theorem 4.2. When π denotes an anti-invariant Riemannian submersion from
l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB), then the following
are equivalent:

(a) totally geodesic foliation on M is defined by (kerπ∗)

(b) TWBX +ACXW = 0 or TWBX +ACXW ∈ Γ(µ)

(c) gB((∇π∗)(W , JX ), π∗JW
′) = 0, ∀X ∈ Γ((kerπ∗)

⊥),W ,W ′ ∈ Γ(kerπ∗).

Proof. Taking into use (2.1), We obtain

g(∇WW ′,X ) = g(J∇WW ′, JX )

= g(∇WJW ′, JX )

= −g(JW ′,∇WJX ), X ∈ Γ((kerπ∗)
⊥),W ,W ′ ∈ Γ(kerπ∗),

where orthogonality between (kerπ∗) and (kerπ∗)
⊥ has been used. Taking help of

(3.2) and Lemma 2.2, above equation reduces to

g(∇WW ′,X ) = −g(JW ′,∇WBX )− g(JW ′,∇WCX )

= −g(JW ′, TWBX )− g(JW ′,ACXW)

= −g(JW ′, TWBX +ACXW)

implying (a)⇔(b). Furthermore, (3.4) produces

g(TWBX , JW ′) + g(ACXW , JW ′)

= g(H(∇WBX ), JW ′) + g(H(∇WCX ), JW ′)

= g(∇WBX , JW ′) + g(∇WCX , JW ′)

= gB(π∗∇WBX , π∗JW
′) + gB(π∗∇WCX , π∗JW

′)

= −gB((∇π∗)(W , BX ), π∗JW
′)− gB((∇π∗)(W , CX ), π∗JW

′)

+ gB(∇
π
Wπ∗CX , π∗JW

′).

Taking into consideration (4.1), we get

g(TWBX , JW ′) + g(ACXW , JW ′)

= −gB((∇π∗)(W , BX ), π∗JW
′)− gB((∇π∗)(W , CX ), π∗JW

′)

= −gB((∇π∗)(W , JX ), π∗JW
′)

concluding (b)⇔(c). ✷

Now, for a Lagrangian Riemannian submersion π, (3.3) interprets TB = π∗(J(kerπ∗)).

Corollary 4.2. When π represents a Lagrangian Riemannian submersion from
l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB), then the following
are equivalent:
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(a) totally geodesic foliation on M is defined by (kerπ∗)

(b) TWJW ′ = 0

(c) (∇π∗)(W , JX ) = 0

for X ∈ Γ((kerπ∗)
⊥) and W ,W ′ ∈ Γ(kerπ∗).

Proof. In the light of Theorem 4.2, (a) ⇔ (b) is obvious. For the proof of
(b) ⇔ (c), consider that (kerπ∗) and (kerπ∗)

⊥ are orthogonal, then we write

g(∇V JW , JX ) = −g(JW ,∇V JX )

= −gB(π∗JW , π∗∇V JX )

= gB(π∗JW , (∇π∗)(V, JX ))

g(TV JW , JX ) = gB(π∗JW , (∇π∗)(V, JX )),

here, we have taken help of (3.4) and Lemma 2.2. Further, TV JW ∈ Γ(kerπ∗) that
provides the required result (b) ⇔ (c). ✷

Definition 4.1. [1] For a differential map π from a Riemannian manifold M onto
a Riemannian manifold B, if ∇π∗ = 0 holds, then π is said to be is called totally
geodesic.

Next, we have

Theorem 4.3. When π is used to denote a Lagrangian Riemannian submersion
from l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB). Then π rep-
resents a totally geodesic map iff

TWJW ′ +
1

2
ω(W ′)JW +

1

2
g(W ,W ′)A = 0

and

AXJW ′ +
1

2
ω(W ′)JX +

1

2
Ω(X ,W ′)B1 = 0,

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ,W ′ ∈ Γ(kerπ∗).

Proof. The following holds for a Riemannian submersion π

(∇π∗)(X ,Y) = 0 ∀X ,Y ∈ Γ((kerπ∗)
⊥)(4.2)

In the light of (2.1), (3.4) and (4.1), we derive

(∇π∗)(W ,W ′) = ∇π
Wπ∗(W

′)− π∗(∇WW ′)

= −π∗(∇WW ′)

= π∗(J(J∇WW ′))

= π∗(J(∇WJW ′ +
1

2
ω(W ′)JW +

1

2
g(W ,W ′)A))

= π∗(J(TWJW ′ +
1

2
ω(W ′)JW +

1

2
g(W ,W ′)A)),(4.3)
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∀W ,W ′ ∈ (kerπ∗).

Further, use of (3.4) produces

(∇π∗)(X ,W ′) = ∇π
Xπ∗(W

′)− π∗(∇XW ′)

= −π∗(∇XW ′)

= π∗(J(J∇XW ′))

= π∗(J(∇XJW ′ +
1

2
ω(W ′)JX +

1

2
Ω(X ,W ′)B1))

= π∗(J(AXJW ′ +
1

2
ω(W ′)JX +

1

2
Ω(X ,W ′)B1))(4.4)

∀X ∈ Γ((kerπ∗)
⊥),W ′ ∈ (kerπ∗). Hence, the result holds in view of (4.2),(4.3) and

(4.4) and singularity of J . ✷

5. Decomposition theorems

[14] Let us use M to represent a manifold whose dimension is m and by (χt) a
system of coordinate neighborhoods used to cover M in such a way that if (χt) and
(χt1) be any two coordinate neighborhoods, then in their intersection we obtain

χa1 = χa1(χa), χx1 = χx1(χx),

with
|δaχ

a1 | 6= 0, |δxχ
x1 | 6= 0,

here all the indices a, b, ... run over 1, 2, ..., p and x, y, z, ... over p+ 1, ..., p+ q = m.
This type of system of coordinate neighborhoods is known as separating coordinate
system and if such a system of coordinate neighborhoods exists then it defines a
locally product structure on the manifold M. A manifold M equipped with a
locally product structure is known as locally product manifold.

Next, we define

Definition 5.1. [9] When N = M × B is a manifold with Riemannian metric
tensor g and DM and DB be the canonical foliations intersecting perpendicularly
everywhere. Then

(i) the necessary and sufficient condition for g to represent the metric tensor of a
warped product M×f ′ B is that DM and DB denote the totally geodesic and
spherical foliations, respectively.

(ii) the necessary and sufficient condition for g to be metric tensor of a twisted
product M ×f ′ B is that DM and DB represent the totally geodesic and
totally umbilical foliations, respectively

(iii) the necessary and sufficient condition for g to be metric tensor of a usual
product of Riemannian manifolds is that DM and DB are totally geodesic
foliations.
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Thanks to Theorems 4.1 and 4.2, we have

Theorem 5.1. When π is used to denote an anti-invariant Riemannian submer-
sion from l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB). Then the
necessary and sufficient condition for M to be locally product manifold is that the
following hold

gB((∇π∗)(X , JY), π∗JW) = −g(CY, JAXW) +
1

2
ω(W)g(CY, CX )

−
1

2
g(BY, B1)g(X , JW)−

1

2
g(X ,Y)g(B1,W)

and

gB((∇π∗)(W , JX ), π∗JW
′) = 0

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ,W ′ ∈ Γ(kerπ∗).

Thanks to Corollaries 4.1 and 4.2, we have

Theorem 5.2. When π is used to denote a Lagrangian Riemannian submersion
from l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB). Then the nec-
essary and sufficient condition for M to be locally product manifold is that the
following hold

gB((∇π∗)(X , JY), π∗JW) = −
1

2
g(JY, B1)g(X , JW)−

1

2
g(X ,Y)g(B1,W)

and

TWJW ′ = 0

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ,W ′ ∈ Γ(kerπ∗).

For twisted product manifold, we get

Theorem 5.3. When π represents a Lagrangian Riemannian submersion from
l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB). Then the necessary
and sufficient condition for M to be locally twisted product manifold of the form
M(kerπ∗)⊥ ×f ′ M(kerπ∗) is that the following relations hold

TWJX = −g(X , TWW)‖W‖−2JW

and

gB(AXJY, JW) =
1

2
g(JY, B1)g(X , JW) +

1

2
g(X ,Y)g(B1,W)

∀X ,Y ∈ Γ((kerπ∗)
⊥),W ,W ′ ∈ Γ(kerπ∗). Here, M(kerπ∗)⊥ ×f ′ M(kerπ∗) denote the

integral manifold of the distributions (kerπ∗)
⊥ and (kerπ∗).
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Proof. With the help of (2.1) and Lemma 2.2, we write

g(∇WW ′,X ) = −g(∇WX ,W ′)

= −g(J∇WX , JW ′)

= −g(∇WJX , JW ′)

= −g(TWJX , JW ′), ∀X ∈ Γ((kerπ∗)
⊥),W ,W ′ ∈ Γ(kerπ∗),

where orthogonality of (kerπ∗)
⊥ and (kerπ∗) has been used. Hence, we conclude

that for any function λ on M, the condition of totally umbilicity holds for (kerπ∗)
iff

TWJX = −X (λ)JW .(5.1)

Therefore, taking in use (2.1), we obtain

g(−X (λ)JW , JW) = g(TWJX , JW)

−X (λ)‖W‖2 = g(TWJX , JW)

= g(∇WJX , JW)

= g(J∇WX , JW)

= −g(X , TWW)

X (λ) = g(X , TWW)‖W‖−2.(5.2)

In this way, (5.1) and (5.2) produce

TWJX = −g(X , TWW)‖W‖−2JW

and that proves the result with the help of Corollary 4.1. ✷

Next, we give a non existence result of a twisted product manifold M(kerπ∗)⊥×f ′

M(kerπ∗).

Theorem 5.4. There does not exist Lagrangian Riemannian submersion π from
l.c.K. manifold (M, g, J) onto a Riemannian manifold (B, gB) such that M is a
locally proper twisted product manifold M(kerπ∗)⊥ ×f ′ M(kerπ∗).

Proof. Let π denotes a Lagrangian Riemannian submersion from l.c.K. manifold
M onto a Riemannian manifold B and M be representing a locally twisted product
M(kerπ∗)⊥ ×f ′ M(kerπ∗). Then, due to definition 5.1, M(kerπ∗) and M(kerπ∗)⊥ will
be representing totally geodesic and totally umbilical foliations, respectively. When
h denotes the second fundamental form of M(kerπ∗)⊥ , we write

g(∇XY,W) = g(h(X ,Y),W), ∀X ,Y ∈ Γ((kerπ∗)
⊥),W ∈ Γ(kerπ∗).

When H is used for the mean curvature vector field of M(kerπ∗)⊥ , then we deduce

g(∇XY,W) = g(H,W)g(X ,Y).(5.3)
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Taking (2.1) and lemma 2.2 into consideration, we present

g(∇XY,W) = −g(Y,∇XW)

= −g(JY, J∇XW)

= −g(JY,AXJW +
1

2
ω(W)JX ),(5.4)

here we used the orthogonal property between (kerπ∗)
⊥ and (kerπ∗). Therefore,

(5.3) and (5.4) generate the following

g(H,W)g(X ,Y) = −g(JY,AXJW +
1

2
ω(W)JX )

g(H,W)g(JY, JX ) = −g(JY,AXJW +
1

2
ω(W)JX )

−g(H,W)‖X‖2 = g(AXJW +
1

2
ω(W)JX , JX )

= g(∇XJW +
1

2
ω(W)JX , JX )

= g(J∇XW , JX )

= −g(W ,∇XX )

Finally, we reach to

g(H,W)‖X‖2 = g(W ,AXX ).

So, use of (2.5) shows AXX = 0, that is g(H,W)‖X‖2 = 0. But, H ∈ Γ(kerπ∗)
with Riemannian metric g supply H = 0 and that that means (kerπ∗)

⊥ is totally
geodesic. That proves M to be usual product of Riemannian manifolds. ✷
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